An Efficient WiFi CSI-Based Multi-Task Modeling Method for Indoor Activity Recognition and Localization: LBA-TCN Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-6896851/v1
With the rapid development of the Internet of Things (IoT) and wireless sensing technologies, contactless perception has become a key enabler for intelligent environments. WiFi Channel State Information (CSI), due to its advantages such as obstacle penetration, low cost, and no need for additional hardware, has been widely applied in tasks including activity recognition, localization, and vital sign monitoring. In this context, how to efficiently utilize CSI data for joint multi-task perception has become an important research focus in the field of wireless intelligent sensing. This paper proposes a multi-task deep learning model, LBA-TCN (Lightweight Bahdanau Attention Temporal Convolutional Network), which integrates multi-scale convolution, temporal modeling, and attention mechanisms for simultaneous activity recognition and indoor localization. The model employs three convolutional branches with different receptive fields to extract multi-scale spatial features and incorporates a Temporal Convolutional Network (TCN) to capture temporal dependencies in CSI sequences. A lightweight additive attention mechanism is further designed to enhance the representation of key temporal features. Experimental results show that LBA-TCN demonstrates strong stability and generalization in multi-class recognition tasks, verifying its potential in WiFi-based multi-task indoor perception applications.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-6896851/v1
- https://www.researchsquare.com/article/rs-6896851/latest.pdf
- OA Status
- gold
- References
- 15
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411462581
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411462581Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-6896851/v1Digital Object Identifier
- Title
-
An Efficient WiFi CSI-Based Multi-Task Modeling Method for Indoor Activity Recognition and Localization: LBA-TCNWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-19Full publication date if available
- Authors
-
Jing He, Kun Zhang, Bing Zheng, Keliu Long, Yu Zhou, Ying ChengList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-6896851/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-6896851/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-6896851/latest.pdfDirect OA link when available
- Concepts
-
Computer science, Convolutional neural network, Wireless, Deep learning, Key (lock), Artificial intelligence, Real-time computing, Telecommunications, Computer securityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
15Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411462581 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-6896851/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-6896851/v1 |
| ids.openalex | https://openalex.org/W4411462581 |
| fwci | 0.0 |
| type | preprint |
| title | An Efficient WiFi CSI-Based Multi-Task Modeling Method for Indoor Activity Recognition and Localization: LBA-TCN |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10326 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Indoor and Outdoor Localization Technologies |
| topics[1].id | https://openalex.org/T10444 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9926999807357788 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Context-Aware Activity Recognition Systems |
| topics[2].id | https://openalex.org/T10860 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9911999702453613 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Speech and Audio Processing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8552003502845764 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6168472766876221 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C555944384 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4967961609363556 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[2].display_name | Wireless |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.47596830129623413 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C26517878 |
| concepts[4].level | 2 |
| concepts[4].score | 0.46037015318870544 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[4].display_name | Key (lock) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4488990306854248 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C79403827 |
| concepts[6].level | 1 |
| concepts[6].score | 0.379852294921875 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[6].display_name | Real-time computing |
| concepts[7].id | https://openalex.org/C76155785 |
| concepts[7].level | 1 |
| concepts[7].score | 0.09925240278244019 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[7].display_name | Telecommunications |
| concepts[8].id | https://openalex.org/C38652104 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[8].display_name | Computer security |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8552003502845764 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.6168472766876221 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/wireless |
| keywords[2].score | 0.4967961609363556 |
| keywords[2].display_name | Wireless |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.47596830129623413 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/key |
| keywords[4].score | 0.46037015318870544 |
| keywords[4].display_name | Key (lock) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4488990306854248 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/real-time-computing |
| keywords[6].score | 0.379852294921875 |
| keywords[6].display_name | Real-time computing |
| keywords[7].id | https://openalex.org/keywords/telecommunications |
| keywords[7].score | 0.09925240278244019 |
| keywords[7].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-6896851/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-6896851/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-6896851/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5078170323 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1954-2892 |
| authorships[0].author.display_name | Jing He |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I152033890 |
| authorships[0].affiliations[0].raw_affiliation_string | Hainan Normal University |
| authorships[0].institutions[0].id | https://openalex.org/I152033890 |
| authorships[0].institutions[0].ror | https://ror.org/031dhcv14 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I152033890 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hainan Normal University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiayao He |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Hainan Normal University |
| authorships[1].author.id | https://openalex.org/A5119011488 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4461-400X |
| authorships[1].author.display_name | Kun Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I152033890 |
| authorships[1].affiliations[0].raw_affiliation_string | Hainan Normal University |
| authorships[1].institutions[0].id | https://openalex.org/I152033890 |
| authorships[1].institutions[0].ror | https://ror.org/031dhcv14 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I152033890 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hainan Normal University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kun Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Hainan Normal University |
| authorships[2].author.id | https://openalex.org/A5101974805 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2295-3569 |
| authorships[2].author.display_name | Bing Zheng |
| authorships[2].countries | YE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I118692353 |
| authorships[2].affiliations[0].raw_affiliation_string | Hainan Vocational University of Science and Technology |
| authorships[2].institutions[0].id | https://openalex.org/I118692353 |
| authorships[2].institutions[0].ror | https://ror.org/05bj7sh33 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I118692353 |
| authorships[2].institutions[0].country_code | YE |
| authorships[2].institutions[0].display_name | University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bing Zheng |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Hainan Vocational University of Science and Technology |
| authorships[3].author.id | https://openalex.org/A5064151319 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3594-8072 |
| authorships[3].author.display_name | Keliu Long |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4510145 |
| authorships[3].affiliations[0].raw_affiliation_string | Jiangxi University of Science and Technology |
| authorships[3].institutions[0].id | https://openalex.org/I4510145 |
| authorships[3].institutions[0].ror | https://ror.org/03q0t9252 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4510145 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Jiangxi University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Keliu Long |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Jiangxi University of Science and Technology |
| authorships[4].author.id | https://openalex.org/A5061025828 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8407-1137 |
| authorships[4].author.display_name | Yu Zhou |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I152033890 |
| authorships[4].affiliations[0].raw_affiliation_string | Hainan Normal University |
| authorships[4].institutions[0].id | https://openalex.org/I152033890 |
| authorships[4].institutions[0].ror | https://ror.org/031dhcv14 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I152033890 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Hainan Normal University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yu Zhou |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Hainan Normal University |
| authorships[5].author.id | https://openalex.org/A5057704753 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9908-597X |
| authorships[5].author.display_name | Ying Cheng |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I152033890 |
| authorships[5].affiliations[0].raw_affiliation_string | Hainan Normal University |
| authorships[5].institutions[0].id | https://openalex.org/I152033890 |
| authorships[5].institutions[0].ror | https://ror.org/031dhcv14 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I152033890 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Hainan Normal University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Yiguo Cheng |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Hainan Normal University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-6896851/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Efficient WiFi CSI-Based Multi-Task Modeling Method for Indoor Activity Recognition and Localization: LBA-TCN |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10326 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Indoor and Outdoor Localization Technologies |
| related_works | https://openalex.org/W4375867731, https://openalex.org/W4391621807, https://openalex.org/W2611989081, https://openalex.org/W4321487865, https://openalex.org/W4313906399, https://openalex.org/W4391621790, https://openalex.org/W4226493464, https://openalex.org/W3133861977, https://openalex.org/W2951211570, https://openalex.org/W3103566983 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-6896851/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-6896851/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-6896851/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-6896851/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-6896851/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-6896851/v1 |
| publication_date | 2025-06-19 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3083719185, https://openalex.org/W2899071208, https://openalex.org/W3210415230, https://openalex.org/W3035383331, https://openalex.org/W4388878549, https://openalex.org/W4283457006, https://openalex.org/W3153796060, https://openalex.org/W4406721794, https://openalex.org/W4226435554, https://openalex.org/W2790800625, https://openalex.org/W3150529520, https://openalex.org/W4407278915, https://openalex.org/W2560674852, https://openalex.org/W2938514801, https://openalex.org/W2153635508 |
| referenced_works_count | 15 |
| abstract_inverted_index.A | 146 |
| abstract_inverted_index.a | 19, 89, 134 |
| abstract_inverted_index.In | 60 |
| abstract_inverted_index.an | 75 |
| abstract_inverted_index.as | 35 |
| abstract_inverted_index.in | 50, 79, 143, 172, 179 |
| abstract_inverted_index.is | 151 |
| abstract_inverted_index.no | 41 |
| abstract_inverted_index.of | 5, 8, 82, 158 |
| abstract_inverted_index.to | 31, 64, 127, 139, 154 |
| abstract_inverted_index.CSI | 67, 144 |
| abstract_inverted_index.The | 117 |
| abstract_inverted_index.and | 11, 40, 56, 107, 114, 132, 170 |
| abstract_inverted_index.due | 30 |
| abstract_inverted_index.for | 22, 43, 69, 110 |
| abstract_inverted_index.has | 17, 46, 73 |
| abstract_inverted_index.how | 63 |
| abstract_inverted_index.its | 32, 177 |
| abstract_inverted_index.key | 20, 159 |
| abstract_inverted_index.low | 38 |
| abstract_inverted_index.the | 2, 6, 80, 156 |
| abstract_inverted_index.This | 86 |
| abstract_inverted_index.WiFi | 25 |
| abstract_inverted_index.With | 1 |
| abstract_inverted_index.been | 47 |
| abstract_inverted_index.data | 68 |
| abstract_inverted_index.deep | 91 |
| abstract_inverted_index.need | 42 |
| abstract_inverted_index.show | 164 |
| abstract_inverted_index.sign | 58 |
| abstract_inverted_index.such | 34 |
| abstract_inverted_index.that | 165 |
| abstract_inverted_index.this | 61 |
| abstract_inverted_index.with | 123 |
| abstract_inverted_index.(IoT) | 10 |
| abstract_inverted_index.(TCN) | 138 |
| abstract_inverted_index.State | 27 |
| abstract_inverted_index.cost, | 39 |
| abstract_inverted_index.field | 81 |
| abstract_inverted_index.focus | 78 |
| abstract_inverted_index.joint | 70 |
| abstract_inverted_index.model | 118 |
| abstract_inverted_index.paper | 87 |
| abstract_inverted_index.rapid | 3 |
| abstract_inverted_index.tasks | 51 |
| abstract_inverted_index.three | 120 |
| abstract_inverted_index.vital | 57 |
| abstract_inverted_index.which | 101 |
| abstract_inverted_index.(CSI), | 29 |
| abstract_inverted_index.Things | 9 |
| abstract_inverted_index.become | 18, 74 |
| abstract_inverted_index.fields | 126 |
| abstract_inverted_index.indoor | 115, 182 |
| abstract_inverted_index.model, | 93 |
| abstract_inverted_index.strong | 168 |
| abstract_inverted_index.tasks, | 175 |
| abstract_inverted_index.widely | 48 |
| abstract_inverted_index.Channel | 26 |
| abstract_inverted_index.LBA-TCN | 94, 166 |
| abstract_inverted_index.Network | 137 |
| abstract_inverted_index.applied | 49 |
| abstract_inverted_index.capture | 140 |
| abstract_inverted_index.employs | 119 |
| abstract_inverted_index.enabler | 21 |
| abstract_inverted_index.enhance | 155 |
| abstract_inverted_index.extract | 128 |
| abstract_inverted_index.further | 152 |
| abstract_inverted_index.results | 163 |
| abstract_inverted_index.sensing | 13 |
| abstract_inverted_index.spatial | 130 |
| abstract_inverted_index.utilize | 66 |
| abstract_inverted_index.Bahdanau | 96 |
| abstract_inverted_index.Internet | 7 |
| abstract_inverted_index.Temporal | 98, 135 |
| abstract_inverted_index.activity | 53, 112 |
| abstract_inverted_index.additive | 148 |
| abstract_inverted_index.branches | 122 |
| abstract_inverted_index.context, | 62 |
| abstract_inverted_index.designed | 153 |
| abstract_inverted_index.features | 131 |
| abstract_inverted_index.learning | 92 |
| abstract_inverted_index.obstacle | 36 |
| abstract_inverted_index.proposes | 88 |
| abstract_inverted_index.research | 77 |
| abstract_inverted_index.sensing. | 85 |
| abstract_inverted_index.temporal | 105, 141, 160 |
| abstract_inverted_index.wireless | 12, 83 |
| abstract_inverted_index.Attention | 97 |
| abstract_inverted_index.Network), | 100 |
| abstract_inverted_index.attention | 108, 149 |
| abstract_inverted_index.different | 124 |
| abstract_inverted_index.features. | 161 |
| abstract_inverted_index.hardware, | 45 |
| abstract_inverted_index.important | 76 |
| abstract_inverted_index.including | 52 |
| abstract_inverted_index.mechanism | 150 |
| abstract_inverted_index.modeling, | 106 |
| abstract_inverted_index.potential | 178 |
| abstract_inverted_index.receptive | 125 |
| abstract_inverted_index.stability | 169 |
| abstract_inverted_index.verifying | 176 |
| abstract_inverted_index.WiFi-based | 180 |
| abstract_inverted_index.additional | 44 |
| abstract_inverted_index.advantages | 33 |
| abstract_inverted_index.integrates | 102 |
| abstract_inverted_index.mechanisms | 109 |
| abstract_inverted_index.multi-task | 71, 90, 181 |
| abstract_inverted_index.perception | 16, 72, 183 |
| abstract_inverted_index.sequences. | 145 |
| abstract_inverted_index.Information | 28 |
| abstract_inverted_index.contactless | 15 |
| abstract_inverted_index.development | 4 |
| abstract_inverted_index.efficiently | 65 |
| abstract_inverted_index.intelligent | 23, 84 |
| abstract_inverted_index.lightweight | 147 |
| abstract_inverted_index.monitoring. | 59 |
| abstract_inverted_index.multi-class | 173 |
| abstract_inverted_index.multi-scale | 103, 129 |
| abstract_inverted_index.recognition | 113, 174 |
| abstract_inverted_index.(Lightweight | 95 |
| abstract_inverted_index.Experimental | 162 |
| abstract_inverted_index.convolution, | 104 |
| abstract_inverted_index.demonstrates | 167 |
| abstract_inverted_index.dependencies | 142 |
| abstract_inverted_index.incorporates | 133 |
| abstract_inverted_index.penetration, | 37 |
| abstract_inverted_index.recognition, | 54 |
| abstract_inverted_index.simultaneous | 111 |
| abstract_inverted_index.Convolutional | 99, 136 |
| abstract_inverted_index.applications. | 184 |
| abstract_inverted_index.convolutional | 121 |
| abstract_inverted_index.environments. | 24 |
| abstract_inverted_index.localization, | 55 |
| abstract_inverted_index.localization. | 116 |
| abstract_inverted_index.technologies, | 14 |
| abstract_inverted_index.generalization | 171 |
| abstract_inverted_index.representation | 157 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.49000000953674316 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.24313784 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |