An Emotion-Guided Approach to Domain Adaptive Fake News Detection Using Adversarial Learning (Student Abstract) Article Swipe
Arkajyoti Chakraborty
,
Inder Khatri
,
Arjun Choudhry
,
Pankaj Gupta
,
Dinesh Kumar Vishwakarma
,
Mukesh Prasad
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v37i13.26949
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v37i13.26949
Recent works on fake news detection have shown the efficacy of using emotions as a feature for improved performance. However, the cross-domain impact of emotion-guided features for fake news detection still remains an open problem. In this work, we propose an emotion-guided, domain-adaptive, multi-task approach for cross-domain fake news detection, proving the efficacy of emotion-guided models in cross-domain settings for various datasets.
Related Topics
Concepts
Adversarial system
Domain (mathematical analysis)
Computer science
Emotion detection
Fake news
Task (project management)
Feature (linguistics)
Artificial intelligence
Key (lock)
Feature engineering
Machine learning
Emotion recognition
Deep learning
Computer security
Engineering
Internet privacy
Mathematics
Linguistics
Mathematical analysis
Systems engineering
Philosophy
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v37i13.26949
- https://ojs.aaai.org/index.php/AAAI/article/download/26949/26721
- OA Status
- diamond
- Cited By
- 6
- References
- 9
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4382318112
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4382318112Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v37i13.26949Digital Object Identifier
- Title
-
An Emotion-Guided Approach to Domain Adaptive Fake News Detection Using Adversarial Learning (Student Abstract)Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-26Full publication date if available
- Authors
-
Arkajyoti Chakraborty, Inder Khatri, Arjun Choudhry, Pankaj Gupta, Dinesh Kumar Vishwakarma, Mukesh PrasadList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v37i13.26949Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/26949/26721Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/26949/26721Direct OA link when available
- Concepts
-
Adversarial system, Domain (mathematical analysis), Computer science, Emotion detection, Fake news, Task (project management), Feature (linguistics), Artificial intelligence, Key (lock), Feature engineering, Machine learning, Emotion recognition, Deep learning, Computer security, Engineering, Internet privacy, Mathematics, Linguistics, Mathematical analysis, Systems engineering, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
9Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4382318112 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v37i13.26949 |
| ids.doi | https://doi.org/10.1609/aaai.v37i13.26949 |
| ids.openalex | https://openalex.org/W4382318112 |
| fwci | 5.85852088 |
| type | article |
| title | An Emotion-Guided Approach to Domain Adaptive Fake News Detection Using Adversarial Learning (Student Abstract) |
| biblio.issue | 13 |
| biblio.volume | 37 |
| biblio.last_page | 16179 |
| biblio.first_page | 16178 |
| topics[0].id | https://openalex.org/T11147 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9945999979972839 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3312 |
| topics[0].subfield.display_name | Sociology and Political Science |
| topics[0].display_name | Misinformation and Its Impacts |
| topics[1].id | https://openalex.org/T11644 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9876999855041504 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Spam and Phishing Detection |
| topics[2].id | https://openalex.org/T10664 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9498000144958496 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Sentiment Analysis and Opinion Mining |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C37736160 |
| concepts[0].level | 2 |
| concepts[0].score | 0.749068021774292 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[0].display_name | Adversarial system |
| concepts[1].id | https://openalex.org/C36503486 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7413532137870789 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[1].display_name | Domain (mathematical analysis) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7154232263565063 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2988148770 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6685451865196228 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1339090 |
| concepts[3].display_name | Emotion detection |
| concepts[4].id | https://openalex.org/C2779756789 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6081928014755249 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q28549308 |
| concepts[4].display_name | Fake news |
| concepts[5].id | https://openalex.org/C2780451532 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6052306890487671 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[5].display_name | Task (project management) |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5779665112495422 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5022914409637451 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C26517878 |
| concepts[8].level | 2 |
| concepts[8].score | 0.49558961391448975 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[8].display_name | Key (lock) |
| concepts[9].id | https://openalex.org/C2778827112 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4938145577907562 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q22245680 |
| concepts[9].display_name | Feature engineering |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.394161581993103 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C2777438025 |
| concepts[11].level | 2 |
| concepts[11].score | 0.2915734648704529 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1339090 |
| concepts[11].display_name | Emotion recognition |
| concepts[12].id | https://openalex.org/C108583219 |
| concepts[12].level | 2 |
| concepts[12].score | 0.22883135080337524 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[12].display_name | Deep learning |
| concepts[13].id | https://openalex.org/C38652104 |
| concepts[13].level | 1 |
| concepts[13].score | 0.08742085099220276 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[13].display_name | Computer security |
| concepts[14].id | https://openalex.org/C127413603 |
| concepts[14].level | 0 |
| concepts[14].score | 0.07584714889526367 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[14].display_name | Engineering |
| concepts[15].id | https://openalex.org/C108827166 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0750015377998352 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q175975 |
| concepts[15].display_name | Internet privacy |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0659288763999939 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C41895202 |
| concepts[17].level | 1 |
| concepts[17].score | 0.05161982774734497 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[17].display_name | Linguistics |
| concepts[18].id | https://openalex.org/C134306372 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[18].display_name | Mathematical analysis |
| concepts[19].id | https://openalex.org/C201995342 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[19].display_name | Systems engineering |
| concepts[20].id | https://openalex.org/C138885662 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[20].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/adversarial-system |
| keywords[0].score | 0.749068021774292 |
| keywords[0].display_name | Adversarial system |
| keywords[1].id | https://openalex.org/keywords/domain |
| keywords[1].score | 0.7413532137870789 |
| keywords[1].display_name | Domain (mathematical analysis) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7154232263565063 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/emotion-detection |
| keywords[3].score | 0.6685451865196228 |
| keywords[3].display_name | Emotion detection |
| keywords[4].id | https://openalex.org/keywords/fake-news |
| keywords[4].score | 0.6081928014755249 |
| keywords[4].display_name | Fake news |
| keywords[5].id | https://openalex.org/keywords/task |
| keywords[5].score | 0.6052306890487671 |
| keywords[5].display_name | Task (project management) |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.5779665112495422 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.5022914409637451 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/key |
| keywords[8].score | 0.49558961391448975 |
| keywords[8].display_name | Key (lock) |
| keywords[9].id | https://openalex.org/keywords/feature-engineering |
| keywords[9].score | 0.4938145577907562 |
| keywords[9].display_name | Feature engineering |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.394161581993103 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/emotion-recognition |
| keywords[11].score | 0.2915734648704529 |
| keywords[11].display_name | Emotion recognition |
| keywords[12].id | https://openalex.org/keywords/deep-learning |
| keywords[12].score | 0.22883135080337524 |
| keywords[12].display_name | Deep learning |
| keywords[13].id | https://openalex.org/keywords/computer-security |
| keywords[13].score | 0.08742085099220276 |
| keywords[13].display_name | Computer security |
| keywords[14].id | https://openalex.org/keywords/engineering |
| keywords[14].score | 0.07584714889526367 |
| keywords[14].display_name | Engineering |
| keywords[15].id | https://openalex.org/keywords/internet-privacy |
| keywords[15].score | 0.0750015377998352 |
| keywords[15].display_name | Internet privacy |
| keywords[16].id | https://openalex.org/keywords/mathematics |
| keywords[16].score | 0.0659288763999939 |
| keywords[16].display_name | Mathematics |
| keywords[17].id | https://openalex.org/keywords/linguistics |
| keywords[17].score | 0.05161982774734497 |
| keywords[17].display_name | Linguistics |
| language | en |
| locations[0].id | doi:10.1609/aaai.v37i13.26949 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/26949/26721 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v37i13.26949 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5081564336 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Arkajyoti Chakraborty |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I863896202 |
| authorships[0].affiliations[0].raw_affiliation_string | Biometric Research Laboratory, Delhi Technological University |
| authorships[0].institutions[0].id | https://openalex.org/I863896202 |
| authorships[0].institutions[0].ror | https://ror.org/01ztcvt22 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I863896202 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Delhi Technological University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Arkajyoti Chakraborty |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Biometric Research Laboratory, Delhi Technological University |
| authorships[1].author.id | https://openalex.org/A5091123666 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3462-1062 |
| authorships[1].author.display_name | Inder Khatri |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I863896202 |
| authorships[1].affiliations[0].raw_affiliation_string | Biometric Research Laboratory, Delhi Technological University |
| authorships[1].institutions[0].id | https://openalex.org/I863896202 |
| authorships[1].institutions[0].ror | https://ror.org/01ztcvt22 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I863896202 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Delhi Technological University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Inder Khatri |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Biometric Research Laboratory, Delhi Technological University |
| authorships[2].author.id | https://openalex.org/A5071233426 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3416-6020 |
| authorships[2].author.display_name | Arjun Choudhry |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I863896202 |
| authorships[2].affiliations[0].raw_affiliation_string | Biometric Research Laboratory, Delhi Technological University |
| authorships[2].institutions[0].id | https://openalex.org/I863896202 |
| authorships[2].institutions[0].ror | https://ror.org/01ztcvt22 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I863896202 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Delhi Technological University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Arjun Choudhry |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Biometric Research Laboratory, Delhi Technological University |
| authorships[3].author.id | https://openalex.org/A5101538108 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2591-324X |
| authorships[3].author.display_name | Pankaj Gupta |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I863896202 |
| authorships[3].affiliations[0].raw_affiliation_string | Biometric Research Laboratory, Delhi Technological University |
| authorships[3].institutions[0].id | https://openalex.org/I863896202 |
| authorships[3].institutions[0].ror | https://ror.org/01ztcvt22 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I863896202 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Delhi Technological University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pankaj Gupta |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Biometric Research Laboratory, Delhi Technological University |
| authorships[4].author.id | https://openalex.org/A5021449557 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1026-0047 |
| authorships[4].author.display_name | Dinesh Kumar Vishwakarma |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I863896202 |
| authorships[4].affiliations[0].raw_affiliation_string | Biometric Research Laboratory, Delhi Technological University |
| authorships[4].institutions[0].id | https://openalex.org/I863896202 |
| authorships[4].institutions[0].ror | https://ror.org/01ztcvt22 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I863896202 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Delhi Technological University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Dinesh Kumar Vishwakarma |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Biometric Research Laboratory, Delhi Technological University |
| authorships[5].author.id | https://openalex.org/A5006355592 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7745-9667 |
| authorships[5].author.display_name | Mukesh Prasad |
| authorships[5].countries | AU |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I114017466 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Computer Science, University of Technology Sydney |
| authorships[5].institutions[0].id | https://openalex.org/I114017466 |
| authorships[5].institutions[0].ror | https://ror.org/03f0f6041 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I114017466 |
| authorships[5].institutions[0].country_code | AU |
| authorships[5].institutions[0].display_name | University of Technology Sydney |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Mukesh Prasad |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Computer Science, University of Technology Sydney |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/26949/26721 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Emotion-Guided Approach to Domain Adaptive Fake News Detection Using Adversarial Learning (Student Abstract) |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11147 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9945999979972839 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3312 |
| primary_topic.subfield.display_name | Sociology and Political Science |
| primary_topic.display_name | Misinformation and Its Impacts |
| related_works | https://openalex.org/W2502115930, https://openalex.org/W4246396837, https://openalex.org/W2482350142, https://openalex.org/W3176240006, https://openalex.org/W3126451824, https://openalex.org/W1561927205, https://openalex.org/W3191453585, https://openalex.org/W4297672492, https://openalex.org/W4288019534, https://openalex.org/W4310988119 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaai.v37i13.26949 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/26949/26721 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v37i13.26949 |
| primary_location.id | doi:10.1609/aaai.v37i13.26949 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/26949/26721 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v37i13.26949 |
| publication_date | 2023-06-26 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4283793370, https://openalex.org/W2791506524, https://openalex.org/W6641983419, https://openalex.org/W2918767572, https://openalex.org/W6653297523, https://openalex.org/W3089691460, https://openalex.org/W2749784378, https://openalex.org/W1966797434, https://openalex.org/W2011722134 |
| referenced_works_count | 9 |
| abstract_inverted_index.a | 14 |
| abstract_inverted_index.In | 35 |
| abstract_inverted_index.an | 32, 40 |
| abstract_inverted_index.as | 13 |
| abstract_inverted_index.in | 56 |
| abstract_inverted_index.of | 10, 23, 53 |
| abstract_inverted_index.on | 2 |
| abstract_inverted_index.we | 38 |
| abstract_inverted_index.for | 16, 26, 45, 59 |
| abstract_inverted_index.the | 8, 20, 51 |
| abstract_inverted_index.fake | 3, 27, 47 |
| abstract_inverted_index.have | 6 |
| abstract_inverted_index.news | 4, 28, 48 |
| abstract_inverted_index.open | 33 |
| abstract_inverted_index.this | 36 |
| abstract_inverted_index.shown | 7 |
| abstract_inverted_index.still | 30 |
| abstract_inverted_index.using | 11 |
| abstract_inverted_index.work, | 37 |
| abstract_inverted_index.works | 1 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.impact | 22 |
| abstract_inverted_index.models | 55 |
| abstract_inverted_index.feature | 15 |
| abstract_inverted_index.propose | 39 |
| abstract_inverted_index.proving | 50 |
| abstract_inverted_index.remains | 31 |
| abstract_inverted_index.various | 60 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.approach | 44 |
| abstract_inverted_index.efficacy | 9, 52 |
| abstract_inverted_index.emotions | 12 |
| abstract_inverted_index.features | 25 |
| abstract_inverted_index.improved | 17 |
| abstract_inverted_index.problem. | 34 |
| abstract_inverted_index.settings | 58 |
| abstract_inverted_index.datasets. | 61 |
| abstract_inverted_index.detection | 5, 29 |
| abstract_inverted_index.detection, | 49 |
| abstract_inverted_index.multi-task | 43 |
| abstract_inverted_index.cross-domain | 21, 46, 57 |
| abstract_inverted_index.performance. | 18 |
| abstract_inverted_index.emotion-guided | 24, 54 |
| abstract_inverted_index.emotion-guided, | 41 |
| abstract_inverted_index.domain-adaptive, | 42 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.96324324 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |