An Empirical Framework for Evaluating Semantic Preservation Using Hugging Face Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2512.07983
As machine learning (ML) becomes an integral part of high-autonomy systems, it is critical to ensure the trustworthiness of learning-enabled software systems (LESS). Yet, the nondeterministic and run-time-defined semantics of ML complicate traditional software refactoring. We define semantic preservation in LESS as the property that optimizations of intelligent components do not alter the system's overall functional behavior. This paper introduces an empirical framework to evaluate semantic preservation in LESS by mining model evolution data from HuggingFace. We extract commit histories, $\textit{Model Cards}$, and performance metrics from a large number of models. To establish baselines, we conducted case studies in three domains, tracing performance changes across versions. Our analysis demonstrates how $\textit{semantic drift}$ can be detected via evaluation metrics across commits and reveals common refactoring patterns based on commit message analysis. Although API constraints limited the possibility of estimating a full-scale threshold, our pipeline offers a foundation for defining community-accepted boundaries for semantic preservation. Our contributions include: (1) a large-scale dataset of ML model evolution, curated from 1.7 million Hugging Face entries via a reproducible pipeline using the native HF hub API, (2) a practical pipeline for the evaluation of semantic preservation for a subset of 536 models and 4000+ metrics and (3) empirical case studies illustrating semantic drift in practice. Together, these contributions advance the foundations for more maintainable and trustworthy ML systems.
Related Topics
- Type
- preprint
- Landing Page
- https://doi.org/10.48550/arxiv.2512.07983
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7114774506
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7114774506Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2512.07983Digital Object Identifier
- Title
-
An Empirical Framework for Evaluating Semantic Preservation Using Hugging FaceWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-08Full publication date if available
- Authors
-
Jia, Nan, Raja, Anita, Khatchadourian, RaffiList of authors in order
- Landing page
-
https://doi.org/10.48550/arxiv.2512.07983Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.48550/arxiv.2512.07983Direct OA link when available
- Concepts
-
Computer science, Commit, Pipeline (software), Semantics (computer science), Tracing, Nondeterministic algorithm, Face (sociological concept), Empirical research, Code refactoring, Software, Semantic data model, Principle of compositionality, Artificial intelligence, Information retrieval, Data mining, Programming language, Machine learning, Software engineering, Natural language processing, Task (project management), Linked data, Data modeling, Semantic analysis (machine learning), Software metric, Software system, Property (philosophy), Semantic computing, ExploitTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7114774506 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2512.07983 |
| ids.doi | https://doi.org/10.48550/arxiv.2512.07983 |
| ids.openalex | https://openalex.org/W7114774506 |
| fwci | |
| type | preprint |
| title | An Empirical Framework for Evaluating Semantic Preservation Using Hugging Face |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8320003151893616 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C153180980 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6981856822967529 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q19776675 |
| concepts[1].display_name | Commit |
| concepts[2].id | https://openalex.org/C43521106 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6120666265487671 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[2].display_name | Pipeline (software) |
| concepts[3].id | https://openalex.org/C184337299 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5921230316162109 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1437428 |
| concepts[3].display_name | Semantics (computer science) |
| concepts[4].id | https://openalex.org/C138673069 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5223284959793091 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q322229 |
| concepts[4].display_name | Tracing |
| concepts[5].id | https://openalex.org/C176181172 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45056799054145813 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3490301 |
| concepts[5].display_name | Nondeterministic algorithm |
| concepts[6].id | https://openalex.org/C2779304628 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4444349408149719 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3503480 |
| concepts[6].display_name | Face (sociological concept) |
| concepts[7].id | https://openalex.org/C120936955 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4287445545196533 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2155640 |
| concepts[7].display_name | Empirical research |
| concepts[8].id | https://openalex.org/C152752567 |
| concepts[8].level | 3 |
| concepts[8].score | 0.40979430079460144 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q116877 |
| concepts[8].display_name | Code refactoring |
| concepts[9].id | https://openalex.org/C2777904410 |
| concepts[9].level | 2 |
| concepts[9].score | 0.409519761800766 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[9].display_name | Software |
| concepts[10].id | https://openalex.org/C90312973 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4009067714214325 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7449052 |
| concepts[10].display_name | Semantic data model |
| concepts[11].id | https://openalex.org/C121375916 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3769153356552124 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q936559 |
| concepts[11].display_name | Principle of compositionality |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.368414968252182 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C23123220 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3257928192615509 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[13].display_name | Information retrieval |
| concepts[14].id | https://openalex.org/C124101348 |
| concepts[14].level | 1 |
| concepts[14].score | 0.31765931844711304 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[14].display_name | Data mining |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.31714746356010437 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| concepts[16].id | https://openalex.org/C119857082 |
| concepts[16].level | 1 |
| concepts[16].score | 0.3055052161216736 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[16].display_name | Machine learning |
| concepts[17].id | https://openalex.org/C115903868 |
| concepts[17].level | 1 |
| concepts[17].score | 0.29039326310157776 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q80993 |
| concepts[17].display_name | Software engineering |
| concepts[18].id | https://openalex.org/C204321447 |
| concepts[18].level | 1 |
| concepts[18].score | 0.2802826166152954 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[18].display_name | Natural language processing |
| concepts[19].id | https://openalex.org/C2780451532 |
| concepts[19].level | 2 |
| concepts[19].score | 0.26917338371276855 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[19].display_name | Task (project management) |
| concepts[20].id | https://openalex.org/C69075417 |
| concepts[20].level | 3 |
| concepts[20].score | 0.26874372363090515 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q515701 |
| concepts[20].display_name | Linked data |
| concepts[21].id | https://openalex.org/C67186912 |
| concepts[21].level | 2 |
| concepts[21].score | 0.26357969641685486 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q367664 |
| concepts[21].display_name | Data modeling |
| concepts[22].id | https://openalex.org/C2777946921 |
| concepts[22].level | 2 |
| concepts[22].score | 0.25672978162765503 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7449044 |
| concepts[22].display_name | Semantic analysis (machine learning) |
| concepts[23].id | https://openalex.org/C82214349 |
| concepts[23].level | 5 |
| concepts[23].score | 0.25512686371803284 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q657339 |
| concepts[23].display_name | Software metric |
| concepts[24].id | https://openalex.org/C149091818 |
| concepts[24].level | 3 |
| concepts[24].score | 0.25214606523513794 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q2429814 |
| concepts[24].display_name | Software system |
| concepts[25].id | https://openalex.org/C189950617 |
| concepts[25].level | 2 |
| concepts[25].score | 0.2519408166408539 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q937228 |
| concepts[25].display_name | Property (philosophy) |
| concepts[26].id | https://openalex.org/C511149849 |
| concepts[26].level | 3 |
| concepts[26].score | 0.2506685256958008 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q7449051 |
| concepts[26].display_name | Semantic computing |
| concepts[27].id | https://openalex.org/C165696696 |
| concepts[27].level | 2 |
| concepts[27].score | 0.2501140534877777 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[27].display_name | Exploit |
| keywords[0].id | https://openalex.org/keywords/commit |
| keywords[0].score | 0.6981856822967529 |
| keywords[0].display_name | Commit |
| keywords[1].id | https://openalex.org/keywords/pipeline |
| keywords[1].score | 0.6120666265487671 |
| keywords[1].display_name | Pipeline (software) |
| keywords[2].id | https://openalex.org/keywords/semantics |
| keywords[2].score | 0.5921230316162109 |
| keywords[2].display_name | Semantics (computer science) |
| keywords[3].id | https://openalex.org/keywords/tracing |
| keywords[3].score | 0.5223284959793091 |
| keywords[3].display_name | Tracing |
| keywords[4].id | https://openalex.org/keywords/nondeterministic-algorithm |
| keywords[4].score | 0.45056799054145813 |
| keywords[4].display_name | Nondeterministic algorithm |
| keywords[5].id | https://openalex.org/keywords/face |
| keywords[5].score | 0.4444349408149719 |
| keywords[5].display_name | Face (sociological concept) |
| keywords[6].id | https://openalex.org/keywords/empirical-research |
| keywords[6].score | 0.4287445545196533 |
| keywords[6].display_name | Empirical research |
| keywords[7].id | https://openalex.org/keywords/code-refactoring |
| keywords[7].score | 0.40979430079460144 |
| keywords[7].display_name | Code refactoring |
| language | |
| locations[0].id | doi:10.48550/arxiv.2512.07983 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.48550/arxiv.2512.07983 |
| indexed_in | datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jia, Nan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jia, Nan |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Raja, Anita |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Raja, Anita |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Khatchadourian, Raffi |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Khatchadourian, Raffi |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.48550/arxiv.2512.07983 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-11T00:00:00 |
| display_name | An Empirical Framework for Evaluating Semantic Preservation Using Hugging Face |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-11T23:13:37.075516 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.48550/arxiv.2512.07983 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.48550/arxiv.2512.07983 |
| primary_location.id | doi:10.48550/arxiv.2512.07983 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.48550/arxiv.2512.07983 |
| publication_date | 2025-12-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 86, 138, 144, 157, 172, 182, 192 |
| abstract_inverted_index.As | 0 |
| abstract_inverted_index.HF | 178 |
| abstract_inverted_index.ML | 30, 161, 221 |
| abstract_inverted_index.To | 91 |
| abstract_inverted_index.We | 35, 76 |
| abstract_inverted_index.an | 5, 60 |
| abstract_inverted_index.as | 41 |
| abstract_inverted_index.be | 113 |
| abstract_inverted_index.by | 69 |
| abstract_inverted_index.do | 49 |
| abstract_inverted_index.in | 39, 67, 98, 208 |
| abstract_inverted_index.is | 12 |
| abstract_inverted_index.it | 11 |
| abstract_inverted_index.of | 8, 18, 29, 46, 89, 136, 160, 188, 194 |
| abstract_inverted_index.on | 126 |
| abstract_inverted_index.to | 14, 63 |
| abstract_inverted_index.we | 94 |
| abstract_inverted_index.(1) | 156 |
| abstract_inverted_index.(2) | 181 |
| abstract_inverted_index.(3) | 201 |
| abstract_inverted_index.1.7 | 166 |
| abstract_inverted_index.536 | 195 |
| abstract_inverted_index.API | 131 |
| abstract_inverted_index.Our | 106, 153 |
| abstract_inverted_index.and | 26, 82, 120, 197, 200, 219 |
| abstract_inverted_index.can | 112 |
| abstract_inverted_index.for | 146, 150, 185, 191, 216 |
| abstract_inverted_index.how | 109 |
| abstract_inverted_index.hub | 179 |
| abstract_inverted_index.not | 50 |
| abstract_inverted_index.our | 141 |
| abstract_inverted_index.the | 16, 24, 42, 52, 134, 176, 186, 214 |
| abstract_inverted_index.via | 115, 171 |
| abstract_inverted_index.(ML) | 3 |
| abstract_inverted_index.API, | 180 |
| abstract_inverted_index.Face | 169 |
| abstract_inverted_index.LESS | 40, 68 |
| abstract_inverted_index.This | 57 |
| abstract_inverted_index.Yet, | 23 |
| abstract_inverted_index.case | 96, 203 |
| abstract_inverted_index.data | 73 |
| abstract_inverted_index.from | 74, 85, 165 |
| abstract_inverted_index.more | 217 |
| abstract_inverted_index.part | 7 |
| abstract_inverted_index.that | 44 |
| abstract_inverted_index.4000+ | 198 |
| abstract_inverted_index.alter | 51 |
| abstract_inverted_index.based | 125 |
| abstract_inverted_index.drift | 207 |
| abstract_inverted_index.large | 87 |
| abstract_inverted_index.model | 71, 162 |
| abstract_inverted_index.paper | 58 |
| abstract_inverted_index.these | 211 |
| abstract_inverted_index.three | 99 |
| abstract_inverted_index.using | 175 |
| abstract_inverted_index.across | 104, 118 |
| abstract_inverted_index.commit | 78, 127 |
| abstract_inverted_index.common | 122 |
| abstract_inverted_index.define | 36 |
| abstract_inverted_index.ensure | 15 |
| abstract_inverted_index.mining | 70 |
| abstract_inverted_index.models | 196 |
| abstract_inverted_index.native | 177 |
| abstract_inverted_index.number | 88 |
| abstract_inverted_index.offers | 143 |
| abstract_inverted_index.subset | 193 |
| abstract_inverted_index.(LESS). | 22 |
| abstract_inverted_index.Hugging | 168 |
| abstract_inverted_index.advance | 213 |
| abstract_inverted_index.becomes | 4 |
| abstract_inverted_index.changes | 103 |
| abstract_inverted_index.commits | 119 |
| abstract_inverted_index.curated | 164 |
| abstract_inverted_index.dataset | 159 |
| abstract_inverted_index.drift}$ | 111 |
| abstract_inverted_index.entries | 170 |
| abstract_inverted_index.extract | 77 |
| abstract_inverted_index.limited | 133 |
| abstract_inverted_index.machine | 1 |
| abstract_inverted_index.message | 128 |
| abstract_inverted_index.metrics | 84, 117, 199 |
| abstract_inverted_index.million | 167 |
| abstract_inverted_index.models. | 90 |
| abstract_inverted_index.overall | 54 |
| abstract_inverted_index.reveals | 121 |
| abstract_inverted_index.studies | 97, 204 |
| abstract_inverted_index.systems | 21 |
| abstract_inverted_index.tracing | 101 |
| abstract_inverted_index.Although | 130 |
| abstract_inverted_index.Cards}$, | 81 |
| abstract_inverted_index.analysis | 107 |
| abstract_inverted_index.critical | 13 |
| abstract_inverted_index.defining | 147 |
| abstract_inverted_index.detected | 114 |
| abstract_inverted_index.domains, | 100 |
| abstract_inverted_index.evaluate | 64 |
| abstract_inverted_index.include: | 155 |
| abstract_inverted_index.integral | 6 |
| abstract_inverted_index.learning | 2 |
| abstract_inverted_index.patterns | 124 |
| abstract_inverted_index.pipeline | 142, 174, 184 |
| abstract_inverted_index.property | 43 |
| abstract_inverted_index.semantic | 37, 65, 151, 189, 206 |
| abstract_inverted_index.software | 20, 33 |
| abstract_inverted_index.system's | 53 |
| abstract_inverted_index.systems, | 10 |
| abstract_inverted_index.systems. | 222 |
| abstract_inverted_index.Together, | 210 |
| abstract_inverted_index.analysis. | 129 |
| abstract_inverted_index.behavior. | 56 |
| abstract_inverted_index.conducted | 95 |
| abstract_inverted_index.empirical | 61, 202 |
| abstract_inverted_index.establish | 92 |
| abstract_inverted_index.evolution | 72 |
| abstract_inverted_index.framework | 62 |
| abstract_inverted_index.practical | 183 |
| abstract_inverted_index.practice. | 209 |
| abstract_inverted_index.semantics | 28 |
| abstract_inverted_index.versions. | 105 |
| abstract_inverted_index.baselines, | 93 |
| abstract_inverted_index.boundaries | 149 |
| abstract_inverted_index.complicate | 31 |
| abstract_inverted_index.components | 48 |
| abstract_inverted_index.estimating | 137 |
| abstract_inverted_index.evaluation | 116, 187 |
| abstract_inverted_index.evolution, | 163 |
| abstract_inverted_index.foundation | 145 |
| abstract_inverted_index.full-scale | 139 |
| abstract_inverted_index.functional | 55 |
| abstract_inverted_index.histories, | 79 |
| abstract_inverted_index.introduces | 59 |
| abstract_inverted_index.threshold, | 140 |
| abstract_inverted_index.constraints | 132 |
| abstract_inverted_index.foundations | 215 |
| abstract_inverted_index.intelligent | 47 |
| abstract_inverted_index.large-scale | 158 |
| abstract_inverted_index.performance | 83, 102 |
| abstract_inverted_index.possibility | 135 |
| abstract_inverted_index.refactoring | 123 |
| abstract_inverted_index.traditional | 32 |
| abstract_inverted_index.trustworthy | 220 |
| abstract_inverted_index.HuggingFace. | 75 |
| abstract_inverted_index.demonstrates | 108 |
| abstract_inverted_index.illustrating | 205 |
| abstract_inverted_index.maintainable | 218 |
| abstract_inverted_index.preservation | 38, 66, 190 |
| abstract_inverted_index.refactoring. | 34 |
| abstract_inverted_index.reproducible | 173 |
| abstract_inverted_index.contributions | 154, 212 |
| abstract_inverted_index.high-autonomy | 9 |
| abstract_inverted_index.optimizations | 45 |
| abstract_inverted_index.preservation. | 152 |
| abstract_inverted_index.$\textit{Model | 80 |
| abstract_inverted_index.trustworthiness | 17 |
| abstract_inverted_index.learning-enabled | 19 |
| abstract_inverted_index.nondeterministic | 25 |
| abstract_inverted_index.run-time-defined | 27 |
| abstract_inverted_index.$\textit{semantic | 110 |
| abstract_inverted_index.community-accepted | 148 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |