An End-to-End Network for Panoptic Segmentation Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1903.05027
Panoptic segmentation, which needs to assign a category label to each pixel and segment each object instance simultaneously, is a challenging topic. Traditionally, the existing approaches utilize two independent models without sharing features, which makes the pipeline inefficient to implement. In addition, a heuristic method is usually employed to merge the results. However, the overlapping relationship between object instances is difficult to determine without sufficient context information during the merging process. To address the problems, we propose a novel end-to-end network for panoptic segmentation, which can efficiently and effectively predict both the instance and stuff segmentation in a single network. Moreover, we introduce a novel spatial ranking module to deal with the occlusion problem between the predicted instances. Extensive experiments have been done to validate the performance of our proposed method and promising results have been achieved on the COCO Panoptic benchmark.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1903.05027
- https://arxiv.org/pdf/1903.05027
- OA Status
- green
- Cited By
- 22
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2922314456
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2922314456Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1903.05027Digital Object Identifier
- Title
-
An End-to-End Network for Panoptic SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-03-12Full publication date if available
- Authors
-
Huanyu Liu, Chao Peng, Changqian Yu, Jingbo Wang, Xu Liu, Gang Yu, Wei JiangList of authors in order
- Landing page
-
https://arxiv.org/abs/1903.05027Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1903.05027Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1903.05027Direct OA link when available
- Concepts
-
Computer science, Segmentation, Artificial intelligence, Merge (version control), Panopticon, Context (archaeology), Benchmark (surveying), Pipeline (software), Process (computing), Data mining, Computer vision, Information retrieval, Geography, Law, Political science, Biology, Paleontology, Geodesy, Programming language, Operating system, PoliticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
22Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 2, 2022: 1, 2021: 7, 2020: 6, 2019: 5Per-year citation counts (last 5 years)
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2922314456 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1903.05027 |
| ids.doi | https://doi.org/10.48550/arxiv.1903.05027 |
| ids.mag | 2922314456 |
| ids.openalex | https://openalex.org/W2922314456 |
| fwci | |
| type | preprint |
| title | An End-to-End Network for Panoptic Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T11605 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9986000061035156 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Visual Attention and Saliency Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8176575303077698 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7888978123664856 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6010820865631104 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C197129107 |
| concepts[3].level | 2 |
| concepts[3].score | 0.545819103717804 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1921621 |
| concepts[3].display_name | Merge (version control) |
| concepts[4].id | https://openalex.org/C138569888 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5045398473739624 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q828310 |
| concepts[4].display_name | Panopticon |
| concepts[5].id | https://openalex.org/C2779343474 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45898211002349854 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[5].display_name | Context (archaeology) |
| concepts[6].id | https://openalex.org/C185798385 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4551510810852051 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[6].display_name | Benchmark (surveying) |
| concepts[7].id | https://openalex.org/C43521106 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4285627007484436 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[7].display_name | Pipeline (software) |
| concepts[8].id | https://openalex.org/C98045186 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4144595265388489 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[8].display_name | Process (computing) |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.38226258754730225 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.36662936210632324 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C23123220 |
| concepts[11].level | 1 |
| concepts[11].score | 0.17789369821548462 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[11].display_name | Information retrieval |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| concepts[13].id | https://openalex.org/C199539241 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[13].display_name | Law |
| concepts[14].id | https://openalex.org/C17744445 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[14].display_name | Political science |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C151730666 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[16].display_name | Paleontology |
| concepts[17].id | https://openalex.org/C13280743 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[17].display_name | Geodesy |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| concepts[19].id | https://openalex.org/C111919701 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[19].display_name | Operating system |
| concepts[20].id | https://openalex.org/C94625758 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[20].display_name | Politics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8176575303077698 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.7888978123664856 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6010820865631104 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/merge |
| keywords[3].score | 0.545819103717804 |
| keywords[3].display_name | Merge (version control) |
| keywords[4].id | https://openalex.org/keywords/panopticon |
| keywords[4].score | 0.5045398473739624 |
| keywords[4].display_name | Panopticon |
| keywords[5].id | https://openalex.org/keywords/context |
| keywords[5].score | 0.45898211002349854 |
| keywords[5].display_name | Context (archaeology) |
| keywords[6].id | https://openalex.org/keywords/benchmark |
| keywords[6].score | 0.4551510810852051 |
| keywords[6].display_name | Benchmark (surveying) |
| keywords[7].id | https://openalex.org/keywords/pipeline |
| keywords[7].score | 0.4285627007484436 |
| keywords[7].display_name | Pipeline (software) |
| keywords[8].id | https://openalex.org/keywords/process |
| keywords[8].score | 0.4144595265388489 |
| keywords[8].display_name | Process (computing) |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.38226258754730225 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/computer-vision |
| keywords[10].score | 0.36662936210632324 |
| keywords[10].display_name | Computer vision |
| keywords[11].id | https://openalex.org/keywords/information-retrieval |
| keywords[11].score | 0.17789369821548462 |
| keywords[11].display_name | Information retrieval |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1903.05027 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1903.05027 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1903.05027 |
| locations[1].id | doi:10.48550/arxiv.1903.05027 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1903.05027 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101535573 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5618-8036 |
| authorships[0].author.display_name | Huanyu Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huanyu Liu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5020100372 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4069-4775 |
| authorships[1].author.display_name | Chao Peng |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chao Peng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5013651586 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4488-4157 |
| authorships[2].author.display_name | Changqian Yu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Changqian Yu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100456762 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9700-6262 |
| authorships[3].author.display_name | Jingbo Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jingbo Wang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5110293955 |
| authorships[4].author.orcid | https://orcid.org/0009-0005-2757-7242 |
| authorships[4].author.display_name | Xu Liu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xu Liu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5003400275 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5570-2710 |
| authorships[5].author.display_name | Gang Yu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Gang Yu |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5002942261 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9240-5851 |
| authorships[6].author.display_name | Wei Jiang |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Wei Jiang |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1903.05027 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An End-to-End Network for Panoptic Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2921107741, https://openalex.org/W2197002326, https://openalex.org/W2494728058, https://openalex.org/W3204968380, https://openalex.org/W1710116222, https://openalex.org/W2800383628, https://openalex.org/W2345320341, https://openalex.org/W4381850983, https://openalex.org/W3205665319, https://openalex.org/W4388446985 |
| cited_by_count | 22 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 7 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 6 |
| counts_by_year[4].year | 2019 |
| counts_by_year[4].cited_by_count | 5 |
| counts_by_year[5].year | 2018 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1903.05027 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1903.05027 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1903.05027 |
| primary_location.id | pmh:oai:arXiv.org:1903.05027 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1903.05027 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1903.05027 |
| publication_date | 2019-03-12 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2037227137, https://openalex.org/W2744404335, https://openalex.org/W2964309882, https://openalex.org/W2963016543, https://openalex.org/W260801291, https://openalex.org/W2216125271, https://openalex.org/W2179352600, https://openalex.org/W2963659353, https://openalex.org/W2963948108, https://openalex.org/W2561196672, https://openalex.org/W2194775991, https://openalex.org/W2163605009, https://openalex.org/W2963857746, https://openalex.org/W2737258237, https://openalex.org/W2963150697, https://openalex.org/W2904700592, https://openalex.org/W2886773299, https://openalex.org/W2097117768, https://openalex.org/W1686810756, https://openalex.org/W1901129140, https://openalex.org/W2102605133, https://openalex.org/W2962891704, https://openalex.org/W2963498646, https://openalex.org/W2558156561, https://openalex.org/W2894651257, https://openalex.org/W2555182955, https://openalex.org/W2963881378, https://openalex.org/W2560023338, https://openalex.org/W1948751323, https://openalex.org/W2473415337, https://openalex.org/W2340897893, https://openalex.org/W2565639579, https://openalex.org/W2412782625, https://openalex.org/W2963815618, https://openalex.org/W2557889580, https://openalex.org/W2781228439, https://openalex.org/W2964185501, https://openalex.org/W2798040152, https://openalex.org/W2891601902, https://openalex.org/W2962676885, https://openalex.org/W2963677766, https://openalex.org/W2777795072, https://openalex.org/W2799166040, https://openalex.org/W2286929393, https://openalex.org/W2886934227, https://openalex.org/W2613718673, https://openalex.org/W1903029394 |
| referenced_works_count | 47 |
| abstract_inverted_index.a | 6, 19, 42, 77, 97, 103 |
| abstract_inverted_index.In | 40 |
| abstract_inverted_index.To | 71 |
| abstract_inverted_index.in | 96 |
| abstract_inverted_index.is | 18, 45, 59 |
| abstract_inverted_index.of | 127 |
| abstract_inverted_index.on | 137 |
| abstract_inverted_index.to | 4, 9, 38, 48, 61, 108, 123 |
| abstract_inverted_index.we | 75, 101 |
| abstract_inverted_index.and | 12, 87, 93, 131 |
| abstract_inverted_index.can | 85 |
| abstract_inverted_index.for | 81 |
| abstract_inverted_index.our | 128 |
| abstract_inverted_index.the | 23, 35, 50, 53, 68, 73, 91, 111, 115, 125, 138 |
| abstract_inverted_index.two | 27 |
| abstract_inverted_index.COCO | 139 |
| abstract_inverted_index.been | 121, 135 |
| abstract_inverted_index.both | 90 |
| abstract_inverted_index.deal | 109 |
| abstract_inverted_index.done | 122 |
| abstract_inverted_index.each | 10, 14 |
| abstract_inverted_index.have | 120, 134 |
| abstract_inverted_index.with | 110 |
| abstract_inverted_index.label | 8 |
| abstract_inverted_index.makes | 34 |
| abstract_inverted_index.merge | 49 |
| abstract_inverted_index.needs | 3 |
| abstract_inverted_index.novel | 78, 104 |
| abstract_inverted_index.pixel | 11 |
| abstract_inverted_index.stuff | 94 |
| abstract_inverted_index.which | 2, 33, 84 |
| abstract_inverted_index.assign | 5 |
| abstract_inverted_index.during | 67 |
| abstract_inverted_index.method | 44, 130 |
| abstract_inverted_index.models | 29 |
| abstract_inverted_index.module | 107 |
| abstract_inverted_index.object | 15, 57 |
| abstract_inverted_index.single | 98 |
| abstract_inverted_index.topic. | 21 |
| abstract_inverted_index.address | 72 |
| abstract_inverted_index.between | 56, 114 |
| abstract_inverted_index.context | 65 |
| abstract_inverted_index.merging | 69 |
| abstract_inverted_index.network | 80 |
| abstract_inverted_index.predict | 89 |
| abstract_inverted_index.problem | 113 |
| abstract_inverted_index.propose | 76 |
| abstract_inverted_index.ranking | 106 |
| abstract_inverted_index.results | 133 |
| abstract_inverted_index.segment | 13 |
| abstract_inverted_index.sharing | 31 |
| abstract_inverted_index.spatial | 105 |
| abstract_inverted_index.usually | 46 |
| abstract_inverted_index.utilize | 26 |
| abstract_inverted_index.without | 30, 63 |
| abstract_inverted_index.However, | 52 |
| abstract_inverted_index.Panoptic | 0, 140 |
| abstract_inverted_index.achieved | 136 |
| abstract_inverted_index.category | 7 |
| abstract_inverted_index.employed | 47 |
| abstract_inverted_index.existing | 24 |
| abstract_inverted_index.instance | 16, 92 |
| abstract_inverted_index.network. | 99 |
| abstract_inverted_index.panoptic | 82 |
| abstract_inverted_index.pipeline | 36 |
| abstract_inverted_index.process. | 70 |
| abstract_inverted_index.proposed | 129 |
| abstract_inverted_index.results. | 51 |
| abstract_inverted_index.validate | 124 |
| abstract_inverted_index.Extensive | 118 |
| abstract_inverted_index.Moreover, | 100 |
| abstract_inverted_index.addition, | 41 |
| abstract_inverted_index.determine | 62 |
| abstract_inverted_index.difficult | 60 |
| abstract_inverted_index.features, | 32 |
| abstract_inverted_index.heuristic | 43 |
| abstract_inverted_index.instances | 58 |
| abstract_inverted_index.introduce | 102 |
| abstract_inverted_index.occlusion | 112 |
| abstract_inverted_index.predicted | 116 |
| abstract_inverted_index.problems, | 74 |
| abstract_inverted_index.promising | 132 |
| abstract_inverted_index.approaches | 25 |
| abstract_inverted_index.benchmark. | 141 |
| abstract_inverted_index.end-to-end | 79 |
| abstract_inverted_index.implement. | 39 |
| abstract_inverted_index.instances. | 117 |
| abstract_inverted_index.sufficient | 64 |
| abstract_inverted_index.challenging | 20 |
| abstract_inverted_index.effectively | 88 |
| abstract_inverted_index.efficiently | 86 |
| abstract_inverted_index.experiments | 119 |
| abstract_inverted_index.independent | 28 |
| abstract_inverted_index.inefficient | 37 |
| abstract_inverted_index.information | 66 |
| abstract_inverted_index.overlapping | 54 |
| abstract_inverted_index.performance | 126 |
| abstract_inverted_index.relationship | 55 |
| abstract_inverted_index.segmentation | 95 |
| abstract_inverted_index.segmentation, | 1, 83 |
| abstract_inverted_index.Traditionally, | 22 |
| abstract_inverted_index.simultaneously, | 17 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |