An Energy-Delay Optimized Model for Efficient WBAN Communication in Iot-Enabled Autism Monitoring Article Swipe
Wireless Body Area Networks (WBANs) have revolutionized healthcare by enabling continuous monitoring of physiological parameters, making them crucial for managing conditions like autism, where real-time data collection and analysis are vital. However, WBANs face challenges such as energy inefficiency, high delay, and communication overhead, particularly in dynamic IoT environments with mobility and emergency scenarios. This study addresses these challenges by proposing an Energy-Delay Optimized Data Communication Model (EDODCM) for WBANs. The primary objective is to enhance energy efficiency, increase network lifetime, reduce end-to-end delay, and minimize communication overhead while ensuring reliable data transmission from wearable sensors to gateways. The EDODCM employs an unequal clustering approach, an optimized duty-cycling mechanism, multi-hop routing for normal and emergency scenarios, and a TDMA-based Optimized Medium Access Control (TDMA-OMAC) for efficient data aggregation and transmission. Simulation results demonstrate that EDODCM improves average energy efficiency by 24.52%, extends average network lifetime by 20.1%, reduces average end-to-end delay by 9.65%, and decreases average communication overhead by 22.18% compared to existing approaches. The novelty of this work lies in its adaptive routing strategies for dynamic scenarios and its focus on integrating WBANs within IoT for real-time autism monitoring. These findings highlight EDODCM’s potential for scalable and efficient WBAN communication, paving the way for improved healthcare solutions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.52783/cana.v32.4117
- https://www.internationalpubls.com/index.php/cana/article/download/4117/2275
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409083450
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409083450Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.52783/cana.v32.4117Digital Object Identifier
- Title
-
An Energy-Delay Optimized Model for Efficient WBAN Communication in Iot-Enabled Autism MonitoringWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-04Full publication date if available
- Authors
-
Sagar Sudhakar BiradeList of authors in order
- Landing page
-
https://doi.org/10.52783/cana.v32.4117Publisher landing page
- PDF URL
-
https://www.internationalpubls.com/index.php/cana/article/download/4117/2275Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.internationalpubls.com/index.php/cana/article/download/4117/2275Direct OA link when available
- Concepts
-
Autism, Internet of Things, Computer science, Computer network, Energy (signal processing), Body area network, Telecommunications, Wireless sensor network, Embedded system, Psychology, Physics, Developmental psychology, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409083450 |
|---|---|
| doi | https://doi.org/10.52783/cana.v32.4117 |
| ids.doi | https://doi.org/10.52783/cana.v32.4117 |
| ids.openalex | https://openalex.org/W4409083450 |
| fwci | 0.0 |
| type | article |
| title | An Energy-Delay Optimized Model for Efficient WBAN Communication in Iot-Enabled Autism Monitoring |
| biblio.issue | 9s |
| biblio.volume | 32 |
| biblio.last_page | 1124 |
| biblio.first_page | 1110 |
| topics[0].id | https://openalex.org/T11932 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9950000047683716 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Wireless Body Area Networks |
| topics[1].id | https://openalex.org/T13052 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9677000045776367 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Molecular Communication and Nanonetworks |
| topics[2].id | https://openalex.org/T11392 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9631999731063843 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Energy Harvesting in Wireless Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C205778803 |
| concepts[0].level | 2 |
| concepts[0].score | 0.618630588054657 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q38404 |
| concepts[0].display_name | Autism |
| concepts[1].id | https://openalex.org/C81860439 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6185050010681152 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q251212 |
| concepts[1].display_name | Internet of Things |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5630140900611877 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C31258907 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4943249225616455 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[3].display_name | Computer network |
| concepts[4].id | https://openalex.org/C186370098 |
| concepts[4].level | 2 |
| concepts[4].score | 0.47088465094566345 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q442787 |
| concepts[4].display_name | Energy (signal processing) |
| concepts[5].id | https://openalex.org/C88737568 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4636344611644745 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q890056 |
| concepts[5].display_name | Body area network |
| concepts[6].id | https://openalex.org/C76155785 |
| concepts[6].level | 1 |
| concepts[6].score | 0.38290101289749146 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[6].display_name | Telecommunications |
| concepts[7].id | https://openalex.org/C24590314 |
| concepts[7].level | 2 |
| concepts[7].score | 0.29790762066841125 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q336038 |
| concepts[7].display_name | Wireless sensor network |
| concepts[8].id | https://openalex.org/C149635348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.24048882722854614 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[8].display_name | Embedded system |
| concepts[9].id | https://openalex.org/C15744967 |
| concepts[9].level | 0 |
| concepts[9].score | 0.19257032871246338 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[9].display_name | Psychology |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.1047578752040863 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C138496976 |
| concepts[11].level | 1 |
| concepts[11].score | 0.05874907970428467 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q175002 |
| concepts[11].display_name | Developmental psychology |
| concepts[12].id | https://openalex.org/C62520636 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[12].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/autism |
| keywords[0].score | 0.618630588054657 |
| keywords[0].display_name | Autism |
| keywords[1].id | https://openalex.org/keywords/internet-of-things |
| keywords[1].score | 0.6185050010681152 |
| keywords[1].display_name | Internet of Things |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5630140900611877 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/computer-network |
| keywords[3].score | 0.4943249225616455 |
| keywords[3].display_name | Computer network |
| keywords[4].id | https://openalex.org/keywords/energy |
| keywords[4].score | 0.47088465094566345 |
| keywords[4].display_name | Energy (signal processing) |
| keywords[5].id | https://openalex.org/keywords/body-area-network |
| keywords[5].score | 0.4636344611644745 |
| keywords[5].display_name | Body area network |
| keywords[6].id | https://openalex.org/keywords/telecommunications |
| keywords[6].score | 0.38290101289749146 |
| keywords[6].display_name | Telecommunications |
| keywords[7].id | https://openalex.org/keywords/wireless-sensor-network |
| keywords[7].score | 0.29790762066841125 |
| keywords[7].display_name | Wireless sensor network |
| keywords[8].id | https://openalex.org/keywords/embedded-system |
| keywords[8].score | 0.24048882722854614 |
| keywords[8].display_name | Embedded system |
| keywords[9].id | https://openalex.org/keywords/psychology |
| keywords[9].score | 0.19257032871246338 |
| keywords[9].display_name | Psychology |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.1047578752040863 |
| keywords[10].display_name | Physics |
| keywords[11].id | https://openalex.org/keywords/developmental-psychology |
| keywords[11].score | 0.05874907970428467 |
| keywords[11].display_name | Developmental psychology |
| language | en |
| locations[0].id | doi:10.52783/cana.v32.4117 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S5406945286 |
| locations[0].source.issn | 1074-133X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1074-133X |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Communications on Applied Nonlinear Analysis |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://www.internationalpubls.com/index.php/cana/article/download/4117/2275 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Communications on Applied Nonlinear Analysis |
| locations[0].landing_page_url | https://doi.org/10.52783/cana.v32.4117 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5035994272 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Sagar Sudhakar Birade |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None Sagar Sudhakar Birade |
| authorships[0].is_corresponding | True |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.internationalpubls.com/index.php/cana/article/download/4117/2275 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Energy-Delay Optimized Model for Efficient WBAN Communication in Iot-Enabled Autism Monitoring |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11932 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9950000047683716 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Wireless Body Area Networks |
| related_works | https://openalex.org/W4280602684, https://openalex.org/W4310092953, https://openalex.org/W2227393071, https://openalex.org/W4402326599, https://openalex.org/W1995350144, https://openalex.org/W2082102603, https://openalex.org/W2166141227, https://openalex.org/W3133980636, https://openalex.org/W4378085486, https://openalex.org/W4366602711 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.52783/cana.v32.4117 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S5406945286 |
| best_oa_location.source.issn | 1074-133X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1074-133X |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Communications on Applied Nonlinear Analysis |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.internationalpubls.com/index.php/cana/article/download/4117/2275 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Communications on Applied Nonlinear Analysis |
| best_oa_location.landing_page_url | https://doi.org/10.52783/cana.v32.4117 |
| primary_location.id | doi:10.52783/cana.v32.4117 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S5406945286 |
| primary_location.source.issn | 1074-133X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1074-133X |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Communications on Applied Nonlinear Analysis |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://www.internationalpubls.com/index.php/cana/article/download/4117/2275 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Communications on Applied Nonlinear Analysis |
| primary_location.landing_page_url | https://doi.org/10.52783/cana.v32.4117 |
| publication_date | 2025-03-04 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 117 |
| abstract_inverted_index.an | 61, 101, 105 |
| abstract_inverted_index.as | 36 |
| abstract_inverted_index.by | 8, 59, 139, 145, 151, 158 |
| abstract_inverted_index.in | 45, 170 |
| abstract_inverted_index.is | 73 |
| abstract_inverted_index.of | 12, 166 |
| abstract_inverted_index.on | 181 |
| abstract_inverted_index.to | 74, 96, 161 |
| abstract_inverted_index.IoT | 47, 185 |
| abstract_inverted_index.The | 70, 98, 164 |
| abstract_inverted_index.and | 27, 41, 51, 84, 113, 116, 128, 153, 178, 197 |
| abstract_inverted_index.are | 29 |
| abstract_inverted_index.for | 18, 68, 111, 124, 175, 186, 195, 204 |
| abstract_inverted_index.its | 171, 179 |
| abstract_inverted_index.the | 202 |
| abstract_inverted_index.way | 203 |
| abstract_inverted_index.Area | 2 |
| abstract_inverted_index.Body | 1 |
| abstract_inverted_index.Data | 64 |
| abstract_inverted_index.This | 54 |
| abstract_inverted_index.WBAN | 199 |
| abstract_inverted_index.data | 25, 91, 126 |
| abstract_inverted_index.face | 33 |
| abstract_inverted_index.from | 93 |
| abstract_inverted_index.have | 5 |
| abstract_inverted_index.high | 39 |
| abstract_inverted_index.lies | 169 |
| abstract_inverted_index.like | 21 |
| abstract_inverted_index.such | 35 |
| abstract_inverted_index.that | 133 |
| abstract_inverted_index.them | 16 |
| abstract_inverted_index.this | 167 |
| abstract_inverted_index.with | 49 |
| abstract_inverted_index.work | 168 |
| abstract_inverted_index.Model | 66 |
| abstract_inverted_index.These | 190 |
| abstract_inverted_index.WBANs | 32, 183 |
| abstract_inverted_index.delay | 150 |
| abstract_inverted_index.focus | 180 |
| abstract_inverted_index.study | 55 |
| abstract_inverted_index.these | 57 |
| abstract_inverted_index.where | 23 |
| abstract_inverted_index.while | 88 |
| abstract_inverted_index.20.1%, | 146 |
| abstract_inverted_index.22.18% | 159 |
| abstract_inverted_index.9.65%, | 152 |
| abstract_inverted_index.Access | 121 |
| abstract_inverted_index.EDODCM | 99, 134 |
| abstract_inverted_index.Medium | 120 |
| abstract_inverted_index.WBANs. | 69 |
| abstract_inverted_index.autism | 188 |
| abstract_inverted_index.delay, | 40, 83 |
| abstract_inverted_index.energy | 37, 76, 137 |
| abstract_inverted_index.making | 15 |
| abstract_inverted_index.normal | 112 |
| abstract_inverted_index.paving | 201 |
| abstract_inverted_index.reduce | 81 |
| abstract_inverted_index.vital. | 30 |
| abstract_inverted_index.within | 184 |
| abstract_inverted_index.(WBANs) | 4 |
| abstract_inverted_index.24.52%, | 140 |
| abstract_inverted_index.Control | 122 |
| abstract_inverted_index.autism, | 22 |
| abstract_inverted_index.average | 136, 142, 148, 155 |
| abstract_inverted_index.crucial | 17 |
| abstract_inverted_index.dynamic | 46, 176 |
| abstract_inverted_index.employs | 100 |
| abstract_inverted_index.enhance | 75 |
| abstract_inverted_index.extends | 141 |
| abstract_inverted_index.network | 79, 143 |
| abstract_inverted_index.novelty | 165 |
| abstract_inverted_index.primary | 71 |
| abstract_inverted_index.reduces | 147 |
| abstract_inverted_index.results | 131 |
| abstract_inverted_index.routing | 110, 173 |
| abstract_inverted_index.sensors | 95 |
| abstract_inverted_index.unequal | 102 |
| abstract_inverted_index.(EDODCM) | 67 |
| abstract_inverted_index.However, | 31 |
| abstract_inverted_index.Networks | 3 |
| abstract_inverted_index.Wireless | 0 |
| abstract_inverted_index.adaptive | 172 |
| abstract_inverted_index.analysis | 28 |
| abstract_inverted_index.compared | 160 |
| abstract_inverted_index.enabling | 9 |
| abstract_inverted_index.ensuring | 89 |
| abstract_inverted_index.existing | 162 |
| abstract_inverted_index.findings | 191 |
| abstract_inverted_index.improved | 205 |
| abstract_inverted_index.improves | 135 |
| abstract_inverted_index.increase | 78 |
| abstract_inverted_index.lifetime | 144 |
| abstract_inverted_index.managing | 19 |
| abstract_inverted_index.minimize | 85 |
| abstract_inverted_index.mobility | 50 |
| abstract_inverted_index.overhead | 87, 157 |
| abstract_inverted_index.reliable | 90 |
| abstract_inverted_index.scalable | 196 |
| abstract_inverted_index.wearable | 94 |
| abstract_inverted_index.Optimized | 63, 119 |
| abstract_inverted_index.addresses | 56 |
| abstract_inverted_index.approach, | 104 |
| abstract_inverted_index.decreases | 154 |
| abstract_inverted_index.efficient | 125, 198 |
| abstract_inverted_index.emergency | 52, 114 |
| abstract_inverted_index.gateways. | 97 |
| abstract_inverted_index.highlight | 192 |
| abstract_inverted_index.lifetime, | 80 |
| abstract_inverted_index.multi-hop | 109 |
| abstract_inverted_index.objective | 72 |
| abstract_inverted_index.optimized | 106 |
| abstract_inverted_index.overhead, | 43 |
| abstract_inverted_index.potential | 194 |
| abstract_inverted_index.proposing | 60 |
| abstract_inverted_index.real-time | 24, 187 |
| abstract_inverted_index.scenarios | 177 |
| abstract_inverted_index.EDODCM’s | 193 |
| abstract_inverted_index.Simulation | 130 |
| abstract_inverted_index.TDMA-based | 118 |
| abstract_inverted_index.challenges | 34, 58 |
| abstract_inverted_index.clustering | 103 |
| abstract_inverted_index.collection | 26 |
| abstract_inverted_index.conditions | 20 |
| abstract_inverted_index.continuous | 10 |
| abstract_inverted_index.efficiency | 138 |
| abstract_inverted_index.end-to-end | 82, 149 |
| abstract_inverted_index.healthcare | 7, 206 |
| abstract_inverted_index.mechanism, | 108 |
| abstract_inverted_index.monitoring | 11 |
| abstract_inverted_index.scenarios, | 115 |
| abstract_inverted_index.scenarios. | 53 |
| abstract_inverted_index.solutions. | 207 |
| abstract_inverted_index.strategies | 174 |
| abstract_inverted_index.(TDMA-OMAC) | 123 |
| abstract_inverted_index.aggregation | 127 |
| abstract_inverted_index.approaches. | 163 |
| abstract_inverted_index.demonstrate | 132 |
| abstract_inverted_index.efficiency, | 77 |
| abstract_inverted_index.integrating | 182 |
| abstract_inverted_index.monitoring. | 189 |
| abstract_inverted_index.parameters, | 14 |
| abstract_inverted_index.Energy-Delay | 62 |
| abstract_inverted_index.duty-cycling | 107 |
| abstract_inverted_index.environments | 48 |
| abstract_inverted_index.particularly | 44 |
| abstract_inverted_index.transmission | 92 |
| abstract_inverted_index.Communication | 65 |
| abstract_inverted_index.communication | 42, 86, 156 |
| abstract_inverted_index.inefficiency, | 38 |
| abstract_inverted_index.physiological | 13 |
| abstract_inverted_index.transmission. | 129 |
| abstract_inverted_index.communication, | 200 |
| abstract_inverted_index.revolutionized | 6 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5035994272 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.1090644 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |