An Ensemble Approach for Automated Theorem Proving Based on Efficient Name Invariant Graph Neural Representations Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.24963/ijcai.2023/359
Using reinforcement learning for automated theorem proving has recently received much attention. Current approaches use representations of logical statements that often rely on the names used in these statements and, as a result, the models are generally not transferable from one domain to another. The size of these representations and whether to include the whole theory or part of it are other important decisions that affect the performance of these approaches as well as their runtime efficiency. In this paper, we present NIAGRA; an ensemble Name InvAriant Graph RepresentAtion. NIAGRA addresses this problem by using 1) improved Graph Neural Networks for learning name-invariant formula representations that is tailored for their unique characteristics and 2) an efficient ensemble approach for automated theorem proving. Our experimental evaluation shows state-of-the-art performance on multiple datasets from different domains with improvements up to 10% compared to the best learning-based approaches. Furthermore, transfer learning experiments show that our approach significantly outperforms other learning-based approaches by up to 28%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.24963/ijcai.2023/359
- https://www.ijcai.org/proceedings/2023/0359.pdf
- OA Status
- gold
- Cited By
- 3
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385768203
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385768203Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.24963/ijcai.2023/359Digital Object Identifier
- Title
-
An Ensemble Approach for Automated Theorem Proving Based on Efficient Name Invariant Graph Neural RepresentationsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-01Full publication date if available
- Authors
-
Achille Fokoue, Ibrahim Abdelaziz, Maxwell Crouse, Shajith Ikbal, Akihiro Kishimoto, J. G. R. Lima, Ndivhuwo Makondo, Radu MarinescuList of authors in order
- Landing page
-
https://doi.org/10.24963/ijcai.2023/359Publisher landing page
- PDF URL
-
https://www.ijcai.org/proceedings/2023/0359.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.ijcai.org/proceedings/2023/0359.pdfDirect OA link when available
- Concepts
-
Computer science, Invariant (physics), Artificial intelligence, Reinforcement learning, Graph, Artificial neural network, Theoretical computer science, Machine learning, Representation (politics), Transfer of learning, Mathematics, Law, Mathematical physics, Politics, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385768203 |
|---|---|
| doi | https://doi.org/10.24963/ijcai.2023/359 |
| ids.doi | https://doi.org/10.24963/ijcai.2023/359 |
| ids.openalex | https://openalex.org/W4385768203 |
| fwci | 0.76632866 |
| type | article |
| title | An Ensemble Approach for Automated Theorem Proving Based on Efficient Name Invariant Graph Neural Representations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 3229 |
| biblio.first_page | 3221 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9958000183105469 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9883999824523926 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T10215 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9882000088691711 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Semantic Web and Ontologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6777558922767639 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C190470478 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6113064885139465 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2370229 |
| concepts[1].display_name | Invariant (physics) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5571740865707397 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C97541855 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5014901161193848 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[3].display_name | Reinforcement learning |
| concepts[4].id | https://openalex.org/C132525143 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49999070167541504 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[4].display_name | Graph |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49333134293556213 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C80444323 |
| concepts[6].level | 1 |
| concepts[6].score | 0.48451679944992065 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[6].display_name | Theoretical computer science |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.43725717067718506 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C2776359362 |
| concepts[8].level | 3 |
| concepts[8].score | 0.42801859974861145 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[8].display_name | Representation (politics) |
| concepts[9].id | https://openalex.org/C150899416 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4112272560596466 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[9].display_name | Transfer of learning |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.21046507358551025 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C199539241 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[11].display_name | Law |
| concepts[12].id | https://openalex.org/C37914503 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q156495 |
| concepts[12].display_name | Mathematical physics |
| concepts[13].id | https://openalex.org/C94625758 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[13].display_name | Politics |
| concepts[14].id | https://openalex.org/C17744445 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[14].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6777558922767639 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/invariant |
| keywords[1].score | 0.6113064885139465 |
| keywords[1].display_name | Invariant (physics) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5571740865707397 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[3].score | 0.5014901161193848 |
| keywords[3].display_name | Reinforcement learning |
| keywords[4].id | https://openalex.org/keywords/graph |
| keywords[4].score | 0.49999070167541504 |
| keywords[4].display_name | Graph |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.49333134293556213 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[6].score | 0.48451679944992065 |
| keywords[6].display_name | Theoretical computer science |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.43725717067718506 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/representation |
| keywords[8].score | 0.42801859974861145 |
| keywords[8].display_name | Representation (politics) |
| keywords[9].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[9].score | 0.4112272560596466 |
| keywords[9].display_name | Transfer of learning |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.21046507358551025 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.24963/ijcai.2023/359 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://www.ijcai.org/proceedings/2023/0359.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.24963/ijcai.2023/359 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5062643837 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1137-1344 |
| authorships[0].author.display_name | Achille Fokoue |
| authorships[0].affiliations[0].raw_affiliation_string | IBM Research |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Achille Fokoue |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | IBM Research |
| authorships[1].author.id | https://openalex.org/A5031546123 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1449-5115 |
| authorships[1].author.display_name | Ibrahim Abdelaziz |
| authorships[1].affiliations[0].raw_affiliation_string | IBM Research |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ibrahim Abdelaziz |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | IBM Research |
| authorships[2].author.id | https://openalex.org/A5003490179 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7327-7508 |
| authorships[2].author.display_name | Maxwell Crouse |
| authorships[2].affiliations[0].raw_affiliation_string | IBM Research |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Maxwell Crouse |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | IBM Research |
| authorships[3].author.id | https://openalex.org/A5053319645 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Shajith Ikbal |
| authorships[3].affiliations[0].raw_affiliation_string | IBM Research AI |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shajith Ikbal |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | IBM Research AI |
| authorships[4].author.id | https://openalex.org/A5050914303 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1550-3642 |
| authorships[4].author.display_name | Akihiro Kishimoto |
| authorships[4].affiliations[0].raw_affiliation_string | IBM Research |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Akihiro Kishimoto |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | IBM Research |
| authorships[5].author.id | https://openalex.org/A5079046028 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4585-0546 |
| authorships[5].author.display_name | J. G. R. Lima |
| authorships[5].affiliations[0].raw_affiliation_string | IBM Research |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Guilherme Lima |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | IBM Research |
| authorships[6].author.id | https://openalex.org/A5091534140 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4147-3328 |
| authorships[6].author.display_name | Ndivhuwo Makondo |
| authorships[6].affiliations[0].raw_affiliation_string | IBM Research |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Ndivhuwo Makondo |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | IBM Research |
| authorships[7].author.id | https://openalex.org/A5101514813 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-7551-0414 |
| authorships[7].author.display_name | Radu Marinescu |
| authorships[7].affiliations[0].raw_affiliation_string | IBM Research |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Radu Marinescu |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | IBM Research |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ijcai.org/proceedings/2023/0359.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Ensemble Approach for Automated Theorem Proving Based on Efficient Name Invariant Graph Neural Representations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9958000183105469 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W4306904969, https://openalex.org/W2138720691, https://openalex.org/W4362501864, https://openalex.org/W4380318855, https://openalex.org/W3084456289, https://openalex.org/W2024136090, https://openalex.org/W4391331176, https://openalex.org/W2031695474, https://openalex.org/W2586732548, https://openalex.org/W3049728571 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.24963/ijcai.2023/359 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.ijcai.org/proceedings/2023/0359.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.24963/ijcai.2023/359 |
| primary_location.id | doi:10.24963/ijcai.2023/359 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://www.ijcai.org/proceedings/2023/0359.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.24963/ijcai.2023/359 |
| publication_date | 2023-08-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W1499507396, https://openalex.org/W4288017552, https://openalex.org/W2064902266, https://openalex.org/W2103406309, https://openalex.org/W2986920492, https://openalex.org/W2997319416, https://openalex.org/W1989319738, https://openalex.org/W4206624293, https://openalex.org/W1781094, https://openalex.org/W3202844695, https://openalex.org/W4225882755, https://openalex.org/W2242756877, https://openalex.org/W2946011656, https://openalex.org/W1780472831, https://openalex.org/W4300799055, https://openalex.org/W1959794522, https://openalex.org/W4293454588, https://openalex.org/W3038615574, https://openalex.org/W2963376030, https://openalex.org/W2752344401, https://openalex.org/W3177030003, https://openalex.org/W2558748708, https://openalex.org/W4255921169 |
| referenced_works_count | 23 |
| abstract_inverted_index.a | 31 |
| abstract_inverted_index.1) | 95 |
| abstract_inverted_index.2) | 113 |
| abstract_inverted_index.In | 77 |
| abstract_inverted_index.an | 83, 114 |
| abstract_inverted_index.as | 30, 71, 73 |
| abstract_inverted_index.by | 93, 158 |
| abstract_inverted_index.in | 26 |
| abstract_inverted_index.is | 106 |
| abstract_inverted_index.it | 59 |
| abstract_inverted_index.of | 16, 46, 58, 68 |
| abstract_inverted_index.on | 22, 128 |
| abstract_inverted_index.or | 56 |
| abstract_inverted_index.to | 42, 51, 137, 140, 160 |
| abstract_inverted_index.up | 136, 159 |
| abstract_inverted_index.we | 80 |
| abstract_inverted_index.10% | 138 |
| abstract_inverted_index.Our | 122 |
| abstract_inverted_index.The | 44 |
| abstract_inverted_index.and | 49, 112 |
| abstract_inverted_index.are | 35, 60 |
| abstract_inverted_index.for | 3, 100, 108, 118 |
| abstract_inverted_index.has | 7 |
| abstract_inverted_index.not | 37 |
| abstract_inverted_index.one | 40 |
| abstract_inverted_index.our | 151 |
| abstract_inverted_index.the | 23, 33, 53, 66, 141 |
| abstract_inverted_index.use | 14 |
| abstract_inverted_index.28%. | 161 |
| abstract_inverted_index.Name | 85 |
| abstract_inverted_index.and, | 29 |
| abstract_inverted_index.best | 142 |
| abstract_inverted_index.from | 39, 131 |
| abstract_inverted_index.much | 10 |
| abstract_inverted_index.part | 57 |
| abstract_inverted_index.rely | 21 |
| abstract_inverted_index.show | 149 |
| abstract_inverted_index.size | 45 |
| abstract_inverted_index.that | 19, 64, 105, 150 |
| abstract_inverted_index.this | 78, 91 |
| abstract_inverted_index.used | 25 |
| abstract_inverted_index.well | 72 |
| abstract_inverted_index.with | 134 |
| abstract_inverted_index.Graph | 87, 97 |
| abstract_inverted_index.Using | 0 |
| abstract_inverted_index.names | 24 |
| abstract_inverted_index.often | 20 |
| abstract_inverted_index.other | 61, 155 |
| abstract_inverted_index.shows | 125 |
| abstract_inverted_index.their | 74, 109 |
| abstract_inverted_index.these | 27, 47, 69 |
| abstract_inverted_index.using | 94 |
| abstract_inverted_index.whole | 54 |
| abstract_inverted_index.NIAGRA | 89 |
| abstract_inverted_index.Neural | 98 |
| abstract_inverted_index.affect | 65 |
| abstract_inverted_index.domain | 41 |
| abstract_inverted_index.models | 34 |
| abstract_inverted_index.paper, | 79 |
| abstract_inverted_index.theory | 55 |
| abstract_inverted_index.unique | 110 |
| abstract_inverted_index.Current | 12 |
| abstract_inverted_index.NIAGRA; | 82 |
| abstract_inverted_index.domains | 133 |
| abstract_inverted_index.formula | 103 |
| abstract_inverted_index.include | 52 |
| abstract_inverted_index.logical | 17 |
| abstract_inverted_index.present | 81 |
| abstract_inverted_index.problem | 92 |
| abstract_inverted_index.proving | 6 |
| abstract_inverted_index.result, | 32 |
| abstract_inverted_index.runtime | 75 |
| abstract_inverted_index.theorem | 5, 120 |
| abstract_inverted_index.whether | 50 |
| abstract_inverted_index.Networks | 99 |
| abstract_inverted_index.another. | 43 |
| abstract_inverted_index.approach | 117, 152 |
| abstract_inverted_index.compared | 139 |
| abstract_inverted_index.datasets | 130 |
| abstract_inverted_index.ensemble | 84, 116 |
| abstract_inverted_index.improved | 96 |
| abstract_inverted_index.learning | 2, 101, 147 |
| abstract_inverted_index.multiple | 129 |
| abstract_inverted_index.proving. | 121 |
| abstract_inverted_index.received | 9 |
| abstract_inverted_index.recently | 8 |
| abstract_inverted_index.tailored | 107 |
| abstract_inverted_index.transfer | 146 |
| abstract_inverted_index.InvAriant | 86 |
| abstract_inverted_index.addresses | 90 |
| abstract_inverted_index.automated | 4, 119 |
| abstract_inverted_index.decisions | 63 |
| abstract_inverted_index.different | 132 |
| abstract_inverted_index.efficient | 115 |
| abstract_inverted_index.generally | 36 |
| abstract_inverted_index.important | 62 |
| abstract_inverted_index.approaches | 13, 70, 157 |
| abstract_inverted_index.attention. | 11 |
| abstract_inverted_index.evaluation | 124 |
| abstract_inverted_index.statements | 18, 28 |
| abstract_inverted_index.approaches. | 144 |
| abstract_inverted_index.efficiency. | 76 |
| abstract_inverted_index.experiments | 148 |
| abstract_inverted_index.outperforms | 154 |
| abstract_inverted_index.performance | 67, 127 |
| abstract_inverted_index.Furthermore, | 145 |
| abstract_inverted_index.experimental | 123 |
| abstract_inverted_index.improvements | 135 |
| abstract_inverted_index.transferable | 38 |
| abstract_inverted_index.reinforcement | 1 |
| abstract_inverted_index.significantly | 153 |
| abstract_inverted_index.learning-based | 143, 156 |
| abstract_inverted_index.name-invariant | 102 |
| abstract_inverted_index.RepresentAtion. | 88 |
| abstract_inverted_index.characteristics | 111 |
| abstract_inverted_index.representations | 15, 48, 104 |
| abstract_inverted_index.state-of-the-art | 126 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.7373968 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |