An Ensemble Approach Integrating Retrieval-Augmented Large Language Models and Boosting Algorithms for Enhanced Catatonia Phenotyping Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3233/shti250920
A critical first step in using large-scale data to study catatonia is the development of precise phenotyping algorithms that can identify instances of the condition. In this work, we present an ensemble approach that combines retrieval-augmented generation (RAG) large language models (LLMs) with boosting algorithms to phenotype catatonia from the electronic health records (EHRs) of 3.5 million individuals seen at a large academic medical center from 2006 to 2017. Although the ensemble model achieved an AUROC of 0.709, slightly lower than the boosting algorithm alone (AUROC = 0.713), the inclusion of the RAG-LLM component provides enhanced interpretability. In particular, the RAG-LLM can identify contextually complex clinical features, such as those described by the Bush–Francis Catatonia Rating Scale, directly from clinical notes. These results highlight the potential of RAG-LLMs to capture nuanced contextual cues and fulfill complex catatonia phenotype definitions, even when overall classification performance is comparable to more traditional machine learning methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3233/shti250920
- OA Status
- hybrid
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413039982
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413039982Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3233/shti250920Digital Object Identifier
- Title
-
An Ensemble Approach Integrating Retrieval-Augmented Large Language Models and Boosting Algorithms for Enhanced Catatonia PhenotypingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-07Full publication date if available
- Authors
-
Yubo Feng, Ruiyan Ma, Xinmeng Zhang, You ChenList of authors in order
- Landing page
-
https://doi.org/10.3233/shti250920Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3233/shti250920Direct OA link when available
- Concepts
-
Boosting (machine learning), Computer science, Catatonia, Artificial intelligence, Machine learning, Algorithm, Schizophrenia (object-oriented programming), Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413039982 |
|---|---|
| doi | https://doi.org/10.3233/shti250920 |
| ids.doi | https://doi.org/10.3233/shti250920 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40775938 |
| ids.openalex | https://openalex.org/W4413039982 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D057286 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Electronic Health Records |
| mesh[2].qualifier_ui | Q000175 |
| mesh[2].descriptor_ui | D002389 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | diagnosis |
| mesh[2].descriptor_name | Catatonia |
| mesh[3].qualifier_ui | Q000145 |
| mesh[3].descriptor_ui | D002389 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | classification |
| mesh[3].descriptor_name | Catatonia |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000465 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Algorithms |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D010641 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Phenotype |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000069550 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Machine Learning |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D009323 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Natural Language Processing |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000098342 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Large Language Models |
| type | article |
| title | An Ensemble Approach Integrating Retrieval-Augmented Large Language Models and Boosting Algorithms for Enhanced Catatonia Phenotyping |
| biblio.issue | |
| biblio.volume | 329 |
| biblio.last_page | 652 |
| biblio.first_page | 648 |
| topics[0].id | https://openalex.org/T12607 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.857699990272522 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1802 |
| topics[0].subfield.display_name | Information Systems and Management |
| topics[0].display_name | Personal Information Management and User Behavior |
| topics[1].id | https://openalex.org/T11519 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.8059999942779541 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3202 |
| topics[1].subfield.display_name | Applied Psychology |
| topics[1].display_name | Digital Mental Health Interventions |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C46686674 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7773621082305908 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[0].display_name | Boosting (machine learning) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.663533091545105 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2778941822 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5816129446029663 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q501571 |
| concepts[2].display_name | Catatonia |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4880150854587555 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3862842619419098 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3799174427986145 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C2776412080 |
| concepts[6].level | 2 |
| concepts[6].score | 0.07637012004852295 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7431605 |
| concepts[6].display_name | Schizophrenia (object-oriented programming) |
| concepts[7].id | https://openalex.org/C199360897 |
| concepts[7].level | 1 |
| concepts[7].score | 0.07330366969108582 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[7].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/boosting |
| keywords[0].score | 0.7773621082305908 |
| keywords[0].display_name | Boosting (machine learning) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.663533091545105 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/catatonia |
| keywords[2].score | 0.5816129446029663 |
| keywords[2].display_name | Catatonia |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4880150854587555 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.3862842619419098 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.3799174427986145 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/schizophrenia |
| keywords[6].score | 0.07637012004852295 |
| keywords[6].display_name | Schizophrenia (object-oriented programming) |
| keywords[7].id | https://openalex.org/keywords/programming-language |
| keywords[7].score | 0.07330366969108582 |
| keywords[7].display_name | Programming language |
| language | en |
| locations[0].id | doi:10.3233/shti250920 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210179765 |
| locations[0].source.issn | 0926-9630, 1879-8365 |
| locations[0].source.type | book series |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0926-9630 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Studies in health technology and informatics |
| locations[0].source.host_organization | https://openalex.org/P4310318577 |
| locations[0].source.host_organization_name | IOS Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310318577 |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Studies in Health Technology and Informatics |
| locations[0].landing_page_url | https://doi.org/10.3233/shti250920 |
| locations[1].id | pmid:40775938 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Studies in health technology and informatics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40775938 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5039864055 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5446-9125 |
| authorships[0].author.display_name | Yubo Feng |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200719446 |
| authorships[0].affiliations[0].raw_affiliation_string | Vanderbilt University, Nashville, TN, USA |
| authorships[0].institutions[0].id | https://openalex.org/I200719446 |
| authorships[0].institutions[0].ror | https://ror.org/02vm5rt34 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I200719446 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Vanderbilt University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yubo Feng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Vanderbilt University, Nashville, TN, USA |
| authorships[1].author.id | https://openalex.org/A5101425047 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0563-1138 |
| authorships[1].author.display_name | Ruiyan Ma |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I200719446 |
| authorships[1].affiliations[0].raw_affiliation_string | Vanderbilt University, Nashville, TN, USA |
| authorships[1].institutions[0].id | https://openalex.org/I200719446 |
| authorships[1].institutions[0].ror | https://ror.org/02vm5rt34 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I200719446 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Vanderbilt University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ruiyan Ma |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Vanderbilt University, Nashville, TN, USA |
| authorships[2].author.id | https://openalex.org/A5074003488 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3983-2635 |
| authorships[2].author.display_name | Xinmeng Zhang |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I200719446 |
| authorships[2].affiliations[0].raw_affiliation_string | Vanderbilt University, Nashville, TN, USA |
| authorships[2].institutions[0].id | https://openalex.org/I200719446 |
| authorships[2].institutions[0].ror | https://ror.org/02vm5rt34 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I200719446 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Vanderbilt University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xinmeng Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Vanderbilt University, Nashville, TN, USA |
| authorships[3].author.id | https://openalex.org/A5100714052 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8232-8840 |
| authorships[3].author.display_name | You Chen |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I901861585 |
| authorships[3].affiliations[0].raw_affiliation_string | Vanderbilt University Medical Center, Nashville, TN, USA |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I200719446 |
| authorships[3].affiliations[1].raw_affiliation_string | Vanderbilt University, Nashville, TN, USA |
| authorships[3].institutions[0].id | https://openalex.org/I200719446 |
| authorships[3].institutions[0].ror | https://ror.org/02vm5rt34 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I200719446 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Vanderbilt University |
| authorships[3].institutions[1].id | https://openalex.org/I901861585 |
| authorships[3].institutions[1].ror | https://ror.org/05dq2gs74 |
| authorships[3].institutions[1].type | healthcare |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210162197, https://openalex.org/I901861585 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | Vanderbilt University Medical Center |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | You Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Vanderbilt University Medical Center, Nashville, TN, USA, Vanderbilt University, Nashville, TN, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3233/shti250920 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Ensemble Approach Integrating Retrieval-Augmented Large Language Models and Boosting Algorithms for Enhanced Catatonia Phenotyping |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12607 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.857699990272522 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1802 |
| primary_topic.subfield.display_name | Information Systems and Management |
| primary_topic.display_name | Personal Information Management and User Behavior |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3082059448, https://openalex.org/W4313640622, https://openalex.org/W4387369504, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3233/shti250920 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210179765 |
| best_oa_location.source.issn | 0926-9630, 1879-8365 |
| best_oa_location.source.type | book series |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0926-9630 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Studies in health technology and informatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310318577 |
| best_oa_location.source.host_organization_name | IOS Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310318577 |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | book-chapter |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Studies in Health Technology and Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.3233/shti250920 |
| primary_location.id | doi:10.3233/shti250920 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210179765 |
| primary_location.source.issn | 0926-9630, 1879-8365 |
| primary_location.source.type | book series |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0926-9630 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Studies in health technology and informatics |
| primary_location.source.host_organization | https://openalex.org/P4310318577 |
| primary_location.source.host_organization_name | IOS Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310318577 |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Studies in Health Technology and Informatics |
| primary_location.landing_page_url | https://doi.org/10.3233/shti250920 |
| publication_date | 2025-08-07 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 86 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 60 |
| abstract_inverted_index.In | 25, 97 |
| abstract_inverted_index.an | 30, 74 |
| abstract_inverted_index.as | 108 |
| abstract_inverted_index.at | 59 |
| abstract_inverted_index.by | 111 |
| abstract_inverted_index.in | 4 |
| abstract_inverted_index.is | 11, 144 |
| abstract_inverted_index.of | 14, 22, 54, 76, 90, 126 |
| abstract_inverted_index.to | 8, 45, 67, 128, 146 |
| abstract_inverted_index.we | 28 |
| abstract_inverted_index.3.5 | 55 |
| abstract_inverted_index.and | 133 |
| abstract_inverted_index.can | 19, 101 |
| abstract_inverted_index.the | 12, 23, 49, 70, 81, 88, 91, 99, 112, 124 |
| abstract_inverted_index.2006 | 66 |
| abstract_inverted_index.cues | 132 |
| abstract_inverted_index.data | 7 |
| abstract_inverted_index.even | 139 |
| abstract_inverted_index.from | 48, 65, 118 |
| abstract_inverted_index.more | 147 |
| abstract_inverted_index.seen | 58 |
| abstract_inverted_index.step | 3 |
| abstract_inverted_index.such | 107 |
| abstract_inverted_index.than | 80 |
| abstract_inverted_index.that | 18, 33 |
| abstract_inverted_index.this | 26 |
| abstract_inverted_index.when | 140 |
| abstract_inverted_index.with | 42 |
| abstract_inverted_index.(RAG) | 37 |
| abstract_inverted_index.2017. | 68 |
| abstract_inverted_index.AUROC | 75 |
| abstract_inverted_index.These | 121 |
| abstract_inverted_index.alone | 84 |
| abstract_inverted_index.first | 2 |
| abstract_inverted_index.large | 38, 61 |
| abstract_inverted_index.lower | 79 |
| abstract_inverted_index.model | 72 |
| abstract_inverted_index.study | 9 |
| abstract_inverted_index.those | 109 |
| abstract_inverted_index.using | 5 |
| abstract_inverted_index.work, | 27 |
| abstract_inverted_index.(AUROC | 85 |
| abstract_inverted_index.(EHRs) | 53 |
| abstract_inverted_index.(LLMs) | 41 |
| abstract_inverted_index.0.709, | 77 |
| abstract_inverted_index.Rating | 115 |
| abstract_inverted_index.Scale, | 116 |
| abstract_inverted_index.center | 64 |
| abstract_inverted_index.health | 51 |
| abstract_inverted_index.models | 40 |
| abstract_inverted_index.notes. | 120 |
| abstract_inverted_index.0.713), | 87 |
| abstract_inverted_index.RAG-LLM | 92, 100 |
| abstract_inverted_index.capture | 129 |
| abstract_inverted_index.complex | 104, 135 |
| abstract_inverted_index.fulfill | 134 |
| abstract_inverted_index.machine | 149 |
| abstract_inverted_index.medical | 63 |
| abstract_inverted_index.million | 56 |
| abstract_inverted_index.nuanced | 130 |
| abstract_inverted_index.overall | 141 |
| abstract_inverted_index.precise | 15 |
| abstract_inverted_index.present | 29 |
| abstract_inverted_index.records | 52 |
| abstract_inverted_index.results | 122 |
| abstract_inverted_index.Although | 69 |
| abstract_inverted_index.RAG-LLMs | 127 |
| abstract_inverted_index.academic | 62 |
| abstract_inverted_index.achieved | 73 |
| abstract_inverted_index.approach | 32 |
| abstract_inverted_index.boosting | 43, 82 |
| abstract_inverted_index.clinical | 105, 119 |
| abstract_inverted_index.combines | 34 |
| abstract_inverted_index.critical | 1 |
| abstract_inverted_index.directly | 117 |
| abstract_inverted_index.enhanced | 95 |
| abstract_inverted_index.ensemble | 31, 71 |
| abstract_inverted_index.identify | 20, 102 |
| abstract_inverted_index.language | 39 |
| abstract_inverted_index.learning | 150 |
| abstract_inverted_index.methods. | 151 |
| abstract_inverted_index.provides | 94 |
| abstract_inverted_index.slightly | 78 |
| abstract_inverted_index.Catatonia | 114 |
| abstract_inverted_index.algorithm | 83 |
| abstract_inverted_index.catatonia | 10, 47, 136 |
| abstract_inverted_index.component | 93 |
| abstract_inverted_index.described | 110 |
| abstract_inverted_index.features, | 106 |
| abstract_inverted_index.highlight | 123 |
| abstract_inverted_index.inclusion | 89 |
| abstract_inverted_index.instances | 21 |
| abstract_inverted_index.phenotype | 46, 137 |
| abstract_inverted_index.potential | 125 |
| abstract_inverted_index.algorithms | 17, 44 |
| abstract_inverted_index.comparable | 145 |
| abstract_inverted_index.condition. | 24 |
| abstract_inverted_index.contextual | 131 |
| abstract_inverted_index.electronic | 50 |
| abstract_inverted_index.generation | 36 |
| abstract_inverted_index.development | 13 |
| abstract_inverted_index.individuals | 57 |
| abstract_inverted_index.large-scale | 6 |
| abstract_inverted_index.particular, | 98 |
| abstract_inverted_index.performance | 143 |
| abstract_inverted_index.phenotyping | 16 |
| abstract_inverted_index.traditional | 148 |
| abstract_inverted_index.contextually | 103 |
| abstract_inverted_index.definitions, | 138 |
| abstract_inverted_index.Bush–Francis | 113 |
| abstract_inverted_index.classification | 142 |
| abstract_inverted_index.interpretability. | 96 |
| abstract_inverted_index.retrieval-augmented | 35 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.59938734 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |