An ensemble-based enhanced short and medium term load forecasting using optimized missing value imputation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-06610-9
Electricity load forecasting is integral to planning, energy management, and the energy market. Utility companies serve a massive number of customers by supplying electricity. These utility companies require a precise forecast of electricity usage. This paper presents a forecasting model for energy load based on the ensemble voting regressor method. In addition, to enhance the accuracy of forecasting, develop an imputation method for handling missing values in the user’s energy consumption data. A real-time data set is used for performance comparison with multiple imputation techniques to validate the imputation approach by generating random missing data for different missing rates of 10–30%. The proposed forecasting model is compared with other state-of-the-art methods to show its effectiveness in terms of MAPE, MAE, and RMSE. The experimental results demonstrate that the proposed methodology significantly improves the accuracy of the predicted load for a day and week ahead of energy consumption.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-025-06610-9
- OA Status
- gold
- Cited By
- 3
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411848104
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411848104Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-025-06610-9Digital Object Identifier
- Title
-
An ensemble-based enhanced short and medium term load forecasting using optimized missing value imputationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-01Full publication date if available
- Authors
-
Tania Gupta, Richa Bhatia, Sachin SharmaList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-025-06610-9Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1038/s41598-025-06610-9Direct OA link when available
- Concepts
-
Imputation (statistics), Missing data, Computer science, Mean absolute percentage error, Electricity, Mean squared error, Data mining, Statistics, Artificial intelligence, Machine learning, Artificial neural network, Mathematics, Engineering, Electrical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411848104 |
|---|---|
| doi | https://doi.org/10.1038/s41598-025-06610-9 |
| ids.doi | https://doi.org/10.1038/s41598-025-06610-9 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40595065 |
| ids.openalex | https://openalex.org/W4411848104 |
| fwci | 6.06469722 |
| type | article |
| title | An ensemble-based enhanced short and medium term load forecasting using optimized missing value imputation |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 21857 |
| biblio.first_page | 21857 |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| topics[1].id | https://openalex.org/T12617 |
| topics[1].field.id | https://openalex.org/fields/21 |
| topics[1].field.display_name | Energy |
| topics[1].score | 0.9812999963760376 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2105 |
| topics[1].subfield.display_name | Renewable Energy, Sustainability and the Environment |
| topics[1].display_name | Energy, Environment, and Transportation Policies |
| topics[2].id | https://openalex.org/T11276 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9793000221252441 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Solar Radiation and Photovoltaics |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C58041806 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8738445043563843 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1660484 |
| concepts[0].display_name | Imputation (statistics) |
| concepts[1].id | https://openalex.org/C9357733 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7546828985214233 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[1].display_name | Missing data |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7077670097351074 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C150217764 |
| concepts[3].level | 3 |
| concepts[3].score | 0.647304356098175 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6803607 |
| concepts[3].display_name | Mean absolute percentage error |
| concepts[4].id | https://openalex.org/C206658404 |
| concepts[4].level | 2 |
| concepts[4].score | 0.582394540309906 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12725 |
| concepts[4].display_name | Electricity |
| concepts[5].id | https://openalex.org/C139945424 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45640456676483154 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[5].display_name | Mean squared error |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.449887752532959 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.31413131952285767 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.22485432028770447 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.1919233202934265 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.17613911628723145 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.12114390730857849 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.09518930315971375 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C119599485 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[13].display_name | Electrical engineering |
| keywords[0].id | https://openalex.org/keywords/imputation |
| keywords[0].score | 0.8738445043563843 |
| keywords[0].display_name | Imputation (statistics) |
| keywords[1].id | https://openalex.org/keywords/missing-data |
| keywords[1].score | 0.7546828985214233 |
| keywords[1].display_name | Missing data |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7077670097351074 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/mean-absolute-percentage-error |
| keywords[3].score | 0.647304356098175 |
| keywords[3].display_name | Mean absolute percentage error |
| keywords[4].id | https://openalex.org/keywords/electricity |
| keywords[4].score | 0.582394540309906 |
| keywords[4].display_name | Electricity |
| keywords[5].id | https://openalex.org/keywords/mean-squared-error |
| keywords[5].score | 0.45640456676483154 |
| keywords[5].display_name | Mean squared error |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.449887752532959 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.31413131952285767 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.22485432028770447 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.1919233202934265 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.17613911628723145 |
| keywords[10].display_name | Artificial neural network |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.12114390730857849 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.09518930315971375 |
| keywords[12].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1038/s41598-025-06610-9 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-025-06610-9 |
| locations[1].id | pmid:40595065 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40595065 |
| locations[2].id | pmh:oai:doaj.org/article:c74c72b730f04679b4ed33d012ddfa5d |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 15, Iss 1, Pp 1-17 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/c74c72b730f04679b4ed33d012ddfa5d |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12219780 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sci Rep |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12219780 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5110051271 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Tania Gupta |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I105454292, https://openalex.org/I36090812 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electronics and Communication, Netaji Subhas University of Technology, East-Campus (formerly AIACTR, affiliated to GGSIPU, Dwarka), New Delhi, India. |
| authorships[0].institutions[0].id | https://openalex.org/I105454292 |
| authorships[0].institutions[0].ror | https://ror.org/034q1za58 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I105454292 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Guru Gobind Singh Indraprastha University |
| authorships[0].institutions[1].id | https://openalex.org/I36090812 |
| authorships[0].institutions[1].ror | https://ror.org/01fczmh85 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I36090812 |
| authorships[0].institutions[1].country_code | IN |
| authorships[0].institutions[1].display_name | Netaji Subhas University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tania Gupta |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electronics and Communication, Netaji Subhas University of Technology, East-Campus (formerly AIACTR, affiliated to GGSIPU, Dwarka), New Delhi, India. |
| authorships[1].author.id | https://openalex.org/A5044572539 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3888-5193 |
| authorships[1].author.display_name | Richa Bhatia |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I36090812 |
| authorships[1].affiliations[0].raw_affiliation_string | Netaji Subhas University of Technology, East-Campus, New Delhi, India. |
| authorships[1].institutions[0].id | https://openalex.org/I36090812 |
| authorships[1].institutions[0].ror | https://ror.org/01fczmh85 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I36090812 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Netaji Subhas University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Richa Bhatia |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Netaji Subhas University of Technology, East-Campus, New Delhi, India. |
| authorships[2].author.id | https://openalex.org/A5100735225 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7821-3685 |
| authorships[2].author.display_name | Sachin Sharma |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I164861460 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical and Electronics Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India. [email protected]. |
| authorships[2].institutions[0].id | https://openalex.org/I164861460 |
| authorships[2].institutions[0].ror | https://ror.org/02xzytt36 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I164861460 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Manipal Academy of Higher Education |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Sachin Sharma |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical and Electronics Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India. [email protected]. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1038/s41598-025-06610-9 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An ensemble-based enhanced short and medium term load forecasting using optimized missing value imputation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W2181530120, https://openalex.org/W4211215373, https://openalex.org/W2024529227, https://openalex.org/W2055961818, https://openalex.org/W2903115227, https://openalex.org/W1574575415, https://openalex.org/W3144172081, https://openalex.org/W3179858851, https://openalex.org/W2081476516, https://openalex.org/W2581984549 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-025-06610-9 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-025-06610-9 |
| primary_location.id | doi:10.1038/s41598-025-06610-9 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-025-06610-9 |
| publication_date | 2025-07-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4210428686, https://openalex.org/W4390188529, https://openalex.org/W2742473260, https://openalex.org/W4319159759, https://openalex.org/W3048347561, https://openalex.org/W4295038251, https://openalex.org/W3024158773, https://openalex.org/W4395669727, https://openalex.org/W3087545070, https://openalex.org/W2801409148, https://openalex.org/W4313156345, https://openalex.org/W4388195233, https://openalex.org/W2542806636, https://openalex.org/W2955443275, https://openalex.org/W4386143897, https://openalex.org/W4387519131, https://openalex.org/W3204223310, https://openalex.org/W2996374824, https://openalex.org/W2165627882, https://openalex.org/W2161405894, https://openalex.org/W4238059783, https://openalex.org/W2803663262, https://openalex.org/W4283700612, https://openalex.org/W2978973406, https://openalex.org/W3011699874, https://openalex.org/W2954123905, https://openalex.org/W2597866042, https://openalex.org/W2017234245, https://openalex.org/W2168138569, https://openalex.org/W977807926, https://openalex.org/W2919115771, https://openalex.org/W4312761586, https://openalex.org/W3095584634, https://openalex.org/W4284889503, https://openalex.org/W4396703682, https://openalex.org/W4388378214, https://openalex.org/W2979610482, https://openalex.org/W3129993652, https://openalex.org/W3023943971, https://openalex.org/W4285733885, https://openalex.org/W3132473200 |
| referenced_works_count | 41 |
| abstract_inverted_index.A | 73 |
| abstract_inverted_index.a | 17, 29, 38, 140 |
| abstract_inverted_index.In | 51 |
| abstract_inverted_index.an | 60 |
| abstract_inverted_index.by | 22, 91 |
| abstract_inverted_index.in | 67, 116 |
| abstract_inverted_index.is | 4, 77, 106 |
| abstract_inverted_index.of | 20, 32, 57, 100, 118, 135, 145 |
| abstract_inverted_index.on | 45 |
| abstract_inverted_index.to | 6, 53, 86, 112 |
| abstract_inverted_index.The | 102, 123 |
| abstract_inverted_index.and | 10, 121, 142 |
| abstract_inverted_index.day | 141 |
| abstract_inverted_index.for | 41, 63, 79, 96, 139 |
| abstract_inverted_index.its | 114 |
| abstract_inverted_index.set | 76 |
| abstract_inverted_index.the | 11, 46, 55, 68, 88, 128, 133, 136 |
| abstract_inverted_index.MAE, | 120 |
| abstract_inverted_index.This | 35 |
| abstract_inverted_index.data | 75, 95 |
| abstract_inverted_index.load | 2, 43, 138 |
| abstract_inverted_index.show | 113 |
| abstract_inverted_index.that | 127 |
| abstract_inverted_index.used | 78 |
| abstract_inverted_index.week | 143 |
| abstract_inverted_index.with | 82, 108 |
| abstract_inverted_index.MAPE, | 119 |
| abstract_inverted_index.RMSE. | 122 |
| abstract_inverted_index.These | 25 |
| abstract_inverted_index.ahead | 144 |
| abstract_inverted_index.based | 44 |
| abstract_inverted_index.data. | 72 |
| abstract_inverted_index.model | 40, 105 |
| abstract_inverted_index.other | 109 |
| abstract_inverted_index.paper | 36 |
| abstract_inverted_index.rates | 99 |
| abstract_inverted_index.serve | 16 |
| abstract_inverted_index.terms | 117 |
| abstract_inverted_index.energy | 8, 12, 42, 70, 146 |
| abstract_inverted_index.method | 62 |
| abstract_inverted_index.number | 19 |
| abstract_inverted_index.random | 93 |
| abstract_inverted_index.usage. | 34 |
| abstract_inverted_index.values | 66 |
| abstract_inverted_index.voting | 48 |
| abstract_inverted_index.Utility | 14 |
| abstract_inverted_index.develop | 59 |
| abstract_inverted_index.enhance | 54 |
| abstract_inverted_index.market. | 13 |
| abstract_inverted_index.massive | 18 |
| abstract_inverted_index.method. | 50 |
| abstract_inverted_index.methods | 111 |
| abstract_inverted_index.missing | 65, 94, 98 |
| abstract_inverted_index.precise | 30 |
| abstract_inverted_index.require | 28 |
| abstract_inverted_index.results | 125 |
| abstract_inverted_index.utility | 26 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.accuracy | 56, 134 |
| abstract_inverted_index.approach | 90 |
| abstract_inverted_index.compared | 107 |
| abstract_inverted_index.ensemble | 47 |
| abstract_inverted_index.forecast | 31 |
| abstract_inverted_index.handling | 64 |
| abstract_inverted_index.improves | 132 |
| abstract_inverted_index.integral | 5 |
| abstract_inverted_index.multiple | 83 |
| abstract_inverted_index.presents | 37 |
| abstract_inverted_index.proposed | 103, 129 |
| abstract_inverted_index.user’s | 69 |
| abstract_inverted_index.validate | 87 |
| abstract_inverted_index.10–30%. | 101 |
| abstract_inverted_index.addition, | 52 |
| abstract_inverted_index.companies | 15, 27 |
| abstract_inverted_index.customers | 21 |
| abstract_inverted_index.different | 97 |
| abstract_inverted_index.planning, | 7 |
| abstract_inverted_index.predicted | 137 |
| abstract_inverted_index.real-time | 74 |
| abstract_inverted_index.regressor | 49 |
| abstract_inverted_index.supplying | 23 |
| abstract_inverted_index.comparison | 81 |
| abstract_inverted_index.generating | 92 |
| abstract_inverted_index.imputation | 61, 84, 89 |
| abstract_inverted_index.techniques | 85 |
| abstract_inverted_index.Electricity | 1 |
| abstract_inverted_index.consumption | 71 |
| abstract_inverted_index.demonstrate | 126 |
| abstract_inverted_index.electricity | 33 |
| abstract_inverted_index.forecasting | 3, 39, 104 |
| abstract_inverted_index.management, | 9 |
| abstract_inverted_index.methodology | 130 |
| abstract_inverted_index.performance | 80 |
| abstract_inverted_index.consumption. | 147 |
| abstract_inverted_index.electricity. | 24 |
| abstract_inverted_index.experimental | 124 |
| abstract_inverted_index.forecasting, | 58 |
| abstract_inverted_index.effectiveness | 115 |
| abstract_inverted_index.significantly | 131 |
| abstract_inverted_index.state-of-the-art | 110 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.9100000262260437 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.93060347 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |