An Ensemble Deep Convolutional Neural Network Model with Improved D-S Evidence Fusion for Bearing Fault Diagnosis Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.3390/s17081729
Intelligent machine health monitoring and fault diagnosis are becoming increasingly important for modern manufacturing industries. Current fault diagnosis approaches mostly depend on expert-designed features for building prediction models. In this paper, we proposed IDSCNN, a novel bearing fault diagnosis algorithm based on ensemble deep convolutional neural networks and an improved Dempster–Shafer theory based evidence fusion. The convolutional neural networks take the root mean square (RMS) maps from the FFT (Fast Fourier Transformation) features of the vibration signals from two sensors as inputs. The improved D-S evidence theory is implemented via distance matrix from evidences and modified Gini Index. Extensive evaluations of the IDSCNN on the Case Western Reserve Dataset showed that our IDSCNN algorithm can achieve better fault diagnosis performance than existing machine learning methods by fusing complementary or conflicting evidences from different models and sensors and adapting to different load conditions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s17081729
- https://www.mdpi.com/1424-8220/17/8/1729/pdf?version=1507519467
- OA Status
- gold
- Cited By
- 204
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2741289421
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2741289421Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s17081729Digital Object Identifier
- Title
-
An Ensemble Deep Convolutional Neural Network Model with Improved D-S Evidence Fusion for Bearing Fault DiagnosisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-07-28Full publication date if available
- Authors
-
Shaobo Li, Guokai Liu, Xianghong Tang, Jianguang Lu, Jianjun HuList of authors in order
- Landing page
-
https://doi.org/10.3390/s17081729Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/17/8/1729/pdf?version=1507519467Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/17/8/1729/pdf?version=1507519467Direct OA link when available
- Concepts
-
Convolutional neural network, Fault (geology), Bearing (navigation), Computer science, Fusion, Artificial intelligence, Deep learning, Artificial neural network, Pattern recognition (psychology), Geology, Seismology, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
204Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 15, 2024: 24, 2023: 29, 2022: 25, 2021: 29Per-year citation counts (last 5 years)
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2741289421 |
|---|---|
| doi | https://doi.org/10.3390/s17081729 |
| ids.doi | https://doi.org/10.3390/s17081729 |
| ids.mag | 2741289421 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/28788099 |
| ids.openalex | https://openalex.org/W2741289421 |
| fwci | 16.38572649 |
| type | article |
| title | An Ensemble Deep Convolutional Neural Network Model with Improved D-S Evidence Fusion for Bearing Fault Diagnosis |
| biblio.issue | 8 |
| biblio.volume | 17 |
| biblio.last_page | 1729 |
| biblio.first_page | 1729 |
| topics[0].id | https://openalex.org/T10220 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Machine Fault Diagnosis Techniques |
| topics[1].id | https://openalex.org/T10876 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.986299991607666 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Fault Detection and Control Systems |
| topics[2].id | https://openalex.org/T13891 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.98089998960495 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2211 |
| topics[2].subfield.display_name | Mechanics of Materials |
| topics[2].display_name | Engineering Diagnostics and Reliability |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8003103733062744 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C175551986 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6586806178092957 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q47089 |
| concepts[1].display_name | Fault (geology) |
| concepts[2].id | https://openalex.org/C199978012 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6494526863098145 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1273815 |
| concepts[2].display_name | Bearing (navigation) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.585005521774292 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C158525013 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5818141102790833 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[4].display_name | Fusion |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5433202385902405 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5247752070426941 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4391985535621643 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.38483989238739014 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C127313418 |
| concepts[9].level | 0 |
| concepts[9].score | 0.09828907251358032 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[9].display_name | Geology |
| concepts[10].id | https://openalex.org/C165205528 |
| concepts[10].level | 1 |
| concepts[10].score | 0.07964494824409485 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q83371 |
| concepts[10].display_name | Seismology |
| concepts[11].id | https://openalex.org/C138885662 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[11].display_name | Philosophy |
| concepts[12].id | https://openalex.org/C41895202 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[12].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.8003103733062744 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/fault |
| keywords[1].score | 0.6586806178092957 |
| keywords[1].display_name | Fault (geology) |
| keywords[2].id | https://openalex.org/keywords/bearing |
| keywords[2].score | 0.6494526863098145 |
| keywords[2].display_name | Bearing (navigation) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.585005521774292 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/fusion |
| keywords[4].score | 0.5818141102790833 |
| keywords[4].display_name | Fusion |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5433202385902405 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.5247752070426941 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.4391985535621643 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.38483989238739014 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/geology |
| keywords[9].score | 0.09828907251358032 |
| keywords[9].display_name | Geology |
| keywords[10].id | https://openalex.org/keywords/seismology |
| keywords[10].score | 0.07964494824409485 |
| keywords[10].display_name | Seismology |
| language | en |
| locations[0].id | doi:10.3390/s17081729 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/17/8/1729/pdf?version=1507519467 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s17081729 |
| locations[1].id | pmid:28788099 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/28788099 |
| locations[2].id | pmh:oai:scholarcommons.sc.edu:csce_facpub-1285 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401386 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Scholar Commons (University of South Carolina) |
| locations[2].source.host_organization | https://openalex.org/I155781252 |
| locations[2].source.host_organization_name | University of South Carolina |
| locations[2].source.host_organization_lineage | https://openalex.org/I155781252 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Faculty Publications |
| locations[2].landing_page_url | https://scholarcommons.sc.edu/csce_facpub/285 |
| locations[3].id | pmh:oai:doaj.org/article:9cfc1e96027a4bd987aad6cbd9739384 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | cc-by-sa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors, Vol 17, Iss 8, p 1729 (2017) |
| locations[3].landing_page_url | https://doaj.org/article/9cfc1e96027a4bd987aad6cbd9739384 |
| locations[4].id | pmh:oai:mdpi.com:/1424-8220/17/8/1729/ |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400947 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | MDPI (MDPI AG) |
| locations[4].source.host_organization | https://openalex.org/I4210097602 |
| locations[4].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors; Volume 17; Issue 8; Pages: 1729 |
| locations[4].landing_page_url | https://dx.doi.org/10.3390/s17081729 |
| locations[5].id | pmh:oai:pubmedcentral.nih.gov:5579931 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S2764455111 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | PubMed Central |
| locations[5].source.host_organization | https://openalex.org/I1299303238 |
| locations[5].source.host_organization_name | National Institutes of Health |
| locations[5].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[5].license | other-oa |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | Text |
| locations[5].license_id | https://openalex.org/licenses/other-oa |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | |
| locations[5].landing_page_url | http://doi.org/10.3390/s17081729 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100354322 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4759-6000 |
| authorships[0].author.display_name | Shaobo Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I178232147 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Guizhou University, Guiyang 550025, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I178232147 |
| authorships[0].affiliations[1].raw_affiliation_string | Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University, Guiyang 550025, China |
| authorships[0].institutions[0].id | https://openalex.org/I178232147 |
| authorships[0].institutions[0].ror | https://ror.org/02wmsc916 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I178232147 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Guizhou University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shaobo Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University, Guiyang 550025, China, School of Mechanical Engineering, Guizhou University, Guiyang 550025, China |
| authorships[1].author.id | https://openalex.org/A5102856827 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6746-7137 |
| authorships[1].author.display_name | Guokai Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I178232147 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University, Guiyang 550025, China |
| authorships[1].institutions[0].id | https://openalex.org/I178232147 |
| authorships[1].institutions[0].ror | https://ror.org/02wmsc916 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I178232147 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Guizhou University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Guokai Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University, Guiyang 550025, China |
| authorships[2].author.id | https://openalex.org/A5103060458 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3961-5649 |
| authorships[2].author.display_name | Xianghong Tang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I178232147 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Guizhou University, Guiyang 550025, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I178232147 |
| authorships[2].affiliations[1].raw_affiliation_string | Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University, Guiyang 550025, China |
| authorships[2].institutions[0].id | https://openalex.org/I178232147 |
| authorships[2].institutions[0].ror | https://ror.org/02wmsc916 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I178232147 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Guizhou University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xianghong Tang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University, Guiyang 550025, China, School of Mechanical Engineering, Guizhou University, Guiyang 550025, China |
| authorships[3].author.id | https://openalex.org/A5037067067 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2191-1570 |
| authorships[3].author.display_name | Jianguang Lu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I178232147 |
| authorships[3].affiliations[0].raw_affiliation_string | Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University, Guiyang 550025, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I178232147 |
| authorships[3].affiliations[1].raw_affiliation_string | School of Mechanical Engineering, Guizhou University, Guiyang 550025, China |
| authorships[3].institutions[0].id | https://openalex.org/I178232147 |
| authorships[3].institutions[0].ror | https://ror.org/02wmsc916 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I178232147 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Guizhou University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jianguang Lu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University, Guiyang 550025, China, School of Mechanical Engineering, Guizhou University, Guiyang 550025, China |
| authorships[4].author.id | https://openalex.org/A5060537711 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8725-6660 |
| authorships[4].author.display_name | Jianjun Hu |
| authorships[4].countries | CN, US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I178232147 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Guizhou University, Guiyang 550025, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I155781252 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA |
| authorships[4].institutions[0].id | https://openalex.org/I178232147 |
| authorships[4].institutions[0].ror | https://ror.org/02wmsc916 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I178232147 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Guizhou University |
| authorships[4].institutions[1].id | https://openalex.org/I155781252 |
| authorships[4].institutions[1].ror | https://ror.org/02b6qw903 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I155781252 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | University of South Carolina |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jianjun Hu |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA, School of Mechanical Engineering, Guizhou University, Guiyang 550025, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/17/8/1729/pdf?version=1507519467 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Ensemble Deep Convolutional Neural Network Model with Improved D-S Evidence Fusion for Bearing Fault Diagnosis |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10220 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Machine Fault Diagnosis Techniques |
| related_works | https://openalex.org/W4226493464, https://openalex.org/W3133861977, https://openalex.org/W2951211570, https://openalex.org/W3103566983, https://openalex.org/W3029198973, https://openalex.org/W2575656761, https://openalex.org/W2065631063, https://openalex.org/W2378667342, https://openalex.org/W2594567802, https://openalex.org/W2363739414 |
| cited_by_count | 204 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 15 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 24 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 29 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 25 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 29 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 33 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 33 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 15 |
| counts_by_year[8].year | 2017 |
| counts_by_year[8].cited_by_count | 1 |
| locations_count | 6 |
| best_oa_location.id | doi:10.3390/s17081729 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/17/8/1729/pdf?version=1507519467 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s17081729 |
| primary_location.id | doi:10.3390/s17081729 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/17/8/1729/pdf?version=1507519467 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s17081729 |
| publication_date | 2017-07-28 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2037114379, https://openalex.org/W215449996, https://openalex.org/W2078673035, https://openalex.org/W1838067451, https://openalex.org/W1982705494, https://openalex.org/W2019912274, https://openalex.org/W2320886514, https://openalex.org/W2050365060, https://openalex.org/W1999066512, https://openalex.org/W1199827394, https://openalex.org/W2084327162, https://openalex.org/W2051463173, https://openalex.org/W1985716425, https://openalex.org/W2071908367, https://openalex.org/W2027176154, https://openalex.org/W2119530413, https://openalex.org/W2171496202, https://openalex.org/W1985310528, https://openalex.org/W2010131194, https://openalex.org/W2034751647, https://openalex.org/W2069747869, https://openalex.org/W1966659765, https://openalex.org/W2074315341, https://openalex.org/W2082526668, https://openalex.org/W2485614840, https://openalex.org/W6679144490, https://openalex.org/W2461729787, https://openalex.org/W1967879920, https://openalex.org/W2048196003, https://openalex.org/W2141347502, https://openalex.org/W2014817964, https://openalex.org/W2052091458, https://openalex.org/W2556644206, https://openalex.org/W2148660560, https://openalex.org/W2061495571, https://openalex.org/W2003542523, https://openalex.org/W6686854991, https://openalex.org/W2167251835, https://openalex.org/W243674440, https://openalex.org/W2305415255, https://openalex.org/W2369572352, https://openalex.org/W2114463407, https://openalex.org/W6981320639, https://openalex.org/W2219903032, https://openalex.org/W3121258721, https://openalex.org/W2126584714, https://openalex.org/W2188373328, https://openalex.org/W2584994008, https://openalex.org/W2362708743 |
| referenced_works_count | 49 |
| abstract_inverted_index.a | 34 |
| abstract_inverted_index.In | 28 |
| abstract_inverted_index.an | 48 |
| abstract_inverted_index.as | 80 |
| abstract_inverted_index.by | 125 |
| abstract_inverted_index.is | 87 |
| abstract_inverted_index.of | 73, 100 |
| abstract_inverted_index.on | 21, 41, 103 |
| abstract_inverted_index.or | 128 |
| abstract_inverted_index.to | 138 |
| abstract_inverted_index.we | 31 |
| abstract_inverted_index.D-S | 84 |
| abstract_inverted_index.FFT | 68 |
| abstract_inverted_index.The | 55, 82 |
| abstract_inverted_index.and | 4, 47, 94, 134, 136 |
| abstract_inverted_index.are | 7 |
| abstract_inverted_index.can | 114 |
| abstract_inverted_index.for | 11, 24 |
| abstract_inverted_index.our | 111 |
| abstract_inverted_index.the | 60, 67, 74, 101, 104 |
| abstract_inverted_index.two | 78 |
| abstract_inverted_index.via | 89 |
| abstract_inverted_index.Case | 105 |
| abstract_inverted_index.Gini | 96 |
| abstract_inverted_index.deep | 43 |
| abstract_inverted_index.from | 66, 77, 92, 131 |
| abstract_inverted_index.load | 140 |
| abstract_inverted_index.maps | 65 |
| abstract_inverted_index.mean | 62 |
| abstract_inverted_index.root | 61 |
| abstract_inverted_index.take | 59 |
| abstract_inverted_index.than | 120 |
| abstract_inverted_index.that | 110 |
| abstract_inverted_index.this | 29 |
| abstract_inverted_index.(Fast | 69 |
| abstract_inverted_index.(RMS) | 64 |
| abstract_inverted_index.based | 40, 52 |
| abstract_inverted_index.fault | 5, 16, 37, 117 |
| abstract_inverted_index.novel | 35 |
| abstract_inverted_index.IDSCNN | 102, 112 |
| abstract_inverted_index.Index. | 97 |
| abstract_inverted_index.better | 116 |
| abstract_inverted_index.depend | 20 |
| abstract_inverted_index.fusing | 126 |
| abstract_inverted_index.health | 2 |
| abstract_inverted_index.matrix | 91 |
| abstract_inverted_index.models | 133 |
| abstract_inverted_index.modern | 12 |
| abstract_inverted_index.mostly | 19 |
| abstract_inverted_index.neural | 45, 57 |
| abstract_inverted_index.paper, | 30 |
| abstract_inverted_index.showed | 109 |
| abstract_inverted_index.square | 63 |
| abstract_inverted_index.theory | 51, 86 |
| abstract_inverted_index.Current | 15 |
| abstract_inverted_index.Dataset | 108 |
| abstract_inverted_index.Fourier | 70 |
| abstract_inverted_index.IDSCNN, | 33 |
| abstract_inverted_index.Reserve | 107 |
| abstract_inverted_index.Western | 106 |
| abstract_inverted_index.achieve | 115 |
| abstract_inverted_index.bearing | 36 |
| abstract_inverted_index.fusion. | 54 |
| abstract_inverted_index.inputs. | 81 |
| abstract_inverted_index.machine | 1, 122 |
| abstract_inverted_index.methods | 124 |
| abstract_inverted_index.models. | 27 |
| abstract_inverted_index.sensors | 79, 135 |
| abstract_inverted_index.signals | 76 |
| abstract_inverted_index.adapting | 137 |
| abstract_inverted_index.becoming | 8 |
| abstract_inverted_index.building | 25 |
| abstract_inverted_index.distance | 90 |
| abstract_inverted_index.ensemble | 42 |
| abstract_inverted_index.evidence | 53, 85 |
| abstract_inverted_index.existing | 121 |
| abstract_inverted_index.features | 23, 72 |
| abstract_inverted_index.improved | 49, 83 |
| abstract_inverted_index.learning | 123 |
| abstract_inverted_index.modified | 95 |
| abstract_inverted_index.networks | 46, 58 |
| abstract_inverted_index.proposed | 32 |
| abstract_inverted_index.Extensive | 98 |
| abstract_inverted_index.algorithm | 39, 113 |
| abstract_inverted_index.diagnosis | 6, 17, 38, 118 |
| abstract_inverted_index.different | 132, 139 |
| abstract_inverted_index.evidences | 93, 130 |
| abstract_inverted_index.important | 10 |
| abstract_inverted_index.vibration | 75 |
| abstract_inverted_index.approaches | 18 |
| abstract_inverted_index.monitoring | 3 |
| abstract_inverted_index.prediction | 26 |
| abstract_inverted_index.Intelligent | 0 |
| abstract_inverted_index.conditions. | 141 |
| abstract_inverted_index.conflicting | 129 |
| abstract_inverted_index.evaluations | 99 |
| abstract_inverted_index.implemented | 88 |
| abstract_inverted_index.industries. | 14 |
| abstract_inverted_index.performance | 119 |
| abstract_inverted_index.increasingly | 9 |
| abstract_inverted_index.complementary | 127 |
| abstract_inverted_index.convolutional | 44, 56 |
| abstract_inverted_index.manufacturing | 13 |
| abstract_inverted_index.Transformation) | 71 |
| abstract_inverted_index.expert-designed | 22 |
| abstract_inverted_index.Dempster–Shafer | 50 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5060537711 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I155781252, https://openalex.org/I178232147 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.49000000953674316 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.99420928 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |