An evaluation of LLMs and Google Translate for translation of selected Indian languages via sentiment and semantic analyses Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2503.21393
Large Language models (LLMs) have been prominent for language translation, including low-resource languages. There has been limited study on the assessment of the quality of translations generated by LLMs, including Gemini, GPT, and Google Translate. This study addresses this limitation by using semantic and sentiment analysis of selected LLMs for Indian languages, including Sanskrit, Telugu and Hindi. We select prominent texts (Bhagavad Gita, Tamas and Maha Prasthanam ) that have been well translated by experts and use LLMs to generate their translations into English, and provide a comparison with selected expert (human) translations. Our investigation revealed that while LLMs have made significant progress in translation accuracy, challenges remain in preserving sentiment and semantic integrity, especially in metaphorical and philosophical contexts for texts such as the Bhagavad Gita. The sentiment analysis revealed that GPT models are better at preserving the sentiment polarity for the given texts when compared to human (expert) translation. The results revealed that GPT models are generally better at maintaining the sentiment and semantics when compared to Google Translate. This study could help in the development of accurate and culturally sensitive translation systems for large language models.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2503.21393
- https://arxiv.org/pdf/2503.21393
- OA Status
- green
- Cited By
- 1
- OpenAlex ID
- https://openalex.org/W4415062576
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415062576Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2503.21393Digital Object Identifier
- Title
-
An evaluation of LLMs and Google Translate for translation of selected Indian languages via sentiment and semantic analysesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-27Full publication date if available
- Authors
-
Rohitash Chandra, A. Chaudhari, Yeshwanth RayavarapuList of authors in order
- Landing page
-
https://arxiv.org/abs/2503.21393Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2503.21393Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2503.21393Direct OA link when available
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
Full payload
| id | https://openalex.org/W4415062576 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2503.21393 |
| ids.doi | https://doi.org/10.48550/arxiv.2503.21393 |
| ids.openalex | https://openalex.org/W4415062576 |
| fwci | |
| type | preprint |
| title | An evaluation of LLMs and Google Translate for translation of selected Indian languages via sentiment and semantic analyses |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| topics[1].id | https://openalex.org/T10759 |
| topics[1].field.id | https://openalex.org/fields/12 |
| topics[1].field.display_name | Arts and Humanities |
| topics[1].score | 0.9959999918937683 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1203 |
| topics[1].subfield.display_name | Language and Linguistics |
| topics[1].display_name | Translation Studies and Practices |
| topics[2].id | https://openalex.org/T10028 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9343000054359436 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Topic Modeling |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2503.21393 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2503.21393 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2503.21393 |
| locations[1].id | doi:10.48550/arxiv.2503.21393 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2503.21393 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5043246042 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6353-1464 |
| authorships[0].author.display_name | Rohitash Chandra |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chandra, Rohitash |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5062639876 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | A. Chaudhari |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chaudhari, Aryan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5118808405 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yeshwanth Rayavarapu |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Rayavarapu, Yeshwanth |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2503.21393 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-11T00:00:00 |
| display_name | An evaluation of LLMs and Google Translate for translation of selected Indian languages via sentiment and semantic analyses |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2503.21393 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2503.21393 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2503.21393 |
| primary_location.id | pmh:oai:arXiv.org:2503.21393 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2503.21393 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2503.21393 |
| publication_date | 2025-03-27 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.) | 67 |
| abstract_inverted_index.a | 86 |
| abstract_inverted_index.We | 57 |
| abstract_inverted_index.as | 123 |
| abstract_inverted_index.at | 136, 160 |
| abstract_inverted_index.by | 27, 40, 73 |
| abstract_inverted_index.in | 103, 108, 115, 175 |
| abstract_inverted_index.of | 21, 24, 46, 178 |
| abstract_inverted_index.on | 18 |
| abstract_inverted_index.to | 78, 147, 168 |
| abstract_inverted_index.GPT | 132, 155 |
| abstract_inverted_index.Our | 93 |
| abstract_inverted_index.The | 127, 151 |
| abstract_inverted_index.and | 32, 43, 55, 64, 75, 84, 111, 117, 164, 180 |
| abstract_inverted_index.are | 134, 157 |
| abstract_inverted_index.for | 7, 49, 120, 141, 185 |
| abstract_inverted_index.has | 14 |
| abstract_inverted_index.the | 19, 22, 124, 138, 142, 162, 176 |
| abstract_inverted_index.use | 76 |
| abstract_inverted_index.GPT, | 31 |
| abstract_inverted_index.LLMs | 48, 77, 98 |
| abstract_inverted_index.Maha | 65 |
| abstract_inverted_index.This | 35, 171 |
| abstract_inverted_index.been | 5, 15, 70 |
| abstract_inverted_index.have | 4, 69, 99 |
| abstract_inverted_index.help | 174 |
| abstract_inverted_index.into | 82 |
| abstract_inverted_index.made | 100 |
| abstract_inverted_index.such | 122 |
| abstract_inverted_index.that | 68, 96, 131, 154 |
| abstract_inverted_index.this | 38 |
| abstract_inverted_index.well | 71 |
| abstract_inverted_index.when | 145, 166 |
| abstract_inverted_index.with | 88 |
| abstract_inverted_index.Gita, | 62 |
| abstract_inverted_index.Gita. | 126 |
| abstract_inverted_index.LLMs, | 28 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.Tamas | 63 |
| abstract_inverted_index.There | 13 |
| abstract_inverted_index.could | 173 |
| abstract_inverted_index.given | 143 |
| abstract_inverted_index.human | 148 |
| abstract_inverted_index.large | 186 |
| abstract_inverted_index.study | 17, 36, 172 |
| abstract_inverted_index.texts | 60, 121, 144 |
| abstract_inverted_index.their | 80 |
| abstract_inverted_index.using | 41 |
| abstract_inverted_index.while | 97 |
| abstract_inverted_index.(LLMs) | 3 |
| abstract_inverted_index.Google | 33, 169 |
| abstract_inverted_index.Hindi. | 56 |
| abstract_inverted_index.Indian | 50 |
| abstract_inverted_index.Telugu | 54 |
| abstract_inverted_index.better | 135, 159 |
| abstract_inverted_index.expert | 90 |
| abstract_inverted_index.models | 2, 133, 156 |
| abstract_inverted_index.remain | 107 |
| abstract_inverted_index.select | 58 |
| abstract_inverted_index.(human) | 91 |
| abstract_inverted_index.Gemini, | 30 |
| abstract_inverted_index.experts | 74 |
| abstract_inverted_index.limited | 16 |
| abstract_inverted_index.models. | 188 |
| abstract_inverted_index.provide | 85 |
| abstract_inverted_index.quality | 23 |
| abstract_inverted_index.results | 152 |
| abstract_inverted_index.systems | 184 |
| abstract_inverted_index.(expert) | 149 |
| abstract_inverted_index.Bhagavad | 125 |
| abstract_inverted_index.English, | 83 |
| abstract_inverted_index.Language | 1 |
| abstract_inverted_index.accurate | 179 |
| abstract_inverted_index.analysis | 45, 129 |
| abstract_inverted_index.compared | 146, 167 |
| abstract_inverted_index.contexts | 119 |
| abstract_inverted_index.generate | 79 |
| abstract_inverted_index.language | 8, 187 |
| abstract_inverted_index.polarity | 140 |
| abstract_inverted_index.progress | 102 |
| abstract_inverted_index.revealed | 95, 130, 153 |
| abstract_inverted_index.selected | 47, 89 |
| abstract_inverted_index.semantic | 42, 112 |
| abstract_inverted_index.(Bhagavad | 61 |
| abstract_inverted_index.Sanskrit, | 53 |
| abstract_inverted_index.accuracy, | 105 |
| abstract_inverted_index.addresses | 37 |
| abstract_inverted_index.generally | 158 |
| abstract_inverted_index.generated | 26 |
| abstract_inverted_index.including | 10, 29, 52 |
| abstract_inverted_index.prominent | 6, 59 |
| abstract_inverted_index.semantics | 165 |
| abstract_inverted_index.sensitive | 182 |
| abstract_inverted_index.sentiment | 44, 110, 128, 139, 163 |
| abstract_inverted_index.Prasthanam | 66 |
| abstract_inverted_index.Translate. | 34, 170 |
| abstract_inverted_index.assessment | 20 |
| abstract_inverted_index.challenges | 106 |
| abstract_inverted_index.comparison | 87 |
| abstract_inverted_index.culturally | 181 |
| abstract_inverted_index.especially | 114 |
| abstract_inverted_index.integrity, | 113 |
| abstract_inverted_index.languages, | 51 |
| abstract_inverted_index.languages. | 12 |
| abstract_inverted_index.limitation | 39 |
| abstract_inverted_index.preserving | 109, 137 |
| abstract_inverted_index.translated | 72 |
| abstract_inverted_index.development | 177 |
| abstract_inverted_index.maintaining | 161 |
| abstract_inverted_index.significant | 101 |
| abstract_inverted_index.translation | 104, 183 |
| abstract_inverted_index.low-resource | 11 |
| abstract_inverted_index.metaphorical | 116 |
| abstract_inverted_index.translation, | 9 |
| abstract_inverted_index.translation. | 150 |
| abstract_inverted_index.translations | 25, 81 |
| abstract_inverted_index.investigation | 94 |
| abstract_inverted_index.philosophical | 118 |
| abstract_inverted_index.translations. | 92 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |