An Exhaustive Research on the Application of Intrusion Detection Technology in Computer Network Security in Sensor Networks Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1155/2021/5558860
Intrusion detection is crucial in computer network security issues; therefore, this work is aimed at maximizing network security protection and its improvement by proposing various preventive techniques. Outlier detection and semisupervised clustering algorithms based on shared nearest neighbors are proposed in this work to address intrusion detection by converting it into a problem of mining outliers using the network behavior dataset. The algorithm uses shared nearest neighbors as similarity, judges whether it is an outlier according to the number of nearest neighbors of a data point, and performs semisupervised clustering on the dataset where outliers are deleted. In the process of semisupervised clustering, vast prior knowledge is added, and the dataset is clustered according to the principle of graph segmentation. The novelty of the proposed algorithm lies in outlier detection while effectively avoiding the dependence on parameters, thus eliminating the influence of outliers on clustering. This article uses real datasets: lypmphography and glass for simulation purposes. The simulation results show that the algorithm proposed in this paper can effectively detect outliers and has a good clustering effect. Furthermore, the experimentation reveals that the outlier detection‐based SCA‐SNN algorithm has the best practical effect on the dataset without outliers, clearly validating the clustering performance of the outlier detection‐based SCA‐SNN algorithm. Furthermore, compared to the other state‐of‐the‐art anomaly detection method, it was revealed that the anomaly detection technology based on outlier mining does not require a training process. Thus, they overcome the current anomaly detection problems caused due to incomplete normal patterns in training samples.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2021/5558860
- https://downloads.hindawi.com/journals/js/2021/5558860.pdf
- OA Status
- hybrid
- Cited By
- 52
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3170510247
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3170510247Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2021/5558860Digital Object Identifier
- Title
-
An Exhaustive Research on the Application of Intrusion Detection Technology in Computer Network Security in Sensor NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Yajing Wang, Ma Juan, Ashutosh Sharma, Pradeep Kumar Singh, Gurjot Singh Gaba, Mehedi Masud, Mohammed BazList of authors in order
- Landing page
-
https://doi.org/10.1155/2021/5558860Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/js/2021/5558860.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/js/2021/5558860.pdfDirect OA link when available
- Concepts
-
Outlier, Anomaly detection, Cluster analysis, Computer science, Data mining, Intrusion detection system, DBSCAN, Local outlier factor, Artificial intelligence, Pattern recognition (psychology), Network security, CURE data clustering algorithm, Fuzzy clustering, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
52Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 4, 2023: 13, 2022: 24, 2021: 5Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3170510247 |
|---|---|
| doi | https://doi.org/10.1155/2021/5558860 |
| ids.doi | https://doi.org/10.1155/2021/5558860 |
| ids.mag | 3170510247 |
| ids.openalex | https://openalex.org/W3170510247 |
| fwci | 13.39198623 |
| type | article |
| title | An Exhaustive Research on the Application of Intrusion Detection Technology in Computer Network Security in Sensor Networks |
| awards[0].id | https://openalex.org/G7421628520 |
| awards[0].funder_id | https://openalex.org/F4320323722 |
| awards[0].display_name | |
| awards[0].funder_award_id | TURSP-2020/239 |
| awards[0].funder_display_name | Taif University |
| biblio.issue | 1 |
| biblio.volume | 2021 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13647 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9853000044822693 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | AI and Big Data Applications |
| topics[1].id | https://openalex.org/T13027 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9850000143051147 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Applied Advanced Technologies |
| topics[2].id | https://openalex.org/T14413 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.974399983882904 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Technologies in Various Fields |
| funders[0].id | https://openalex.org/F4320323722 |
| funders[0].ror | https://ror.org/014g1a453 |
| funders[0].display_name | Taif University |
| is_xpac | False |
| apc_list.value | 2100 |
| apc_list.currency | USD |
| apc_list.value_usd | 2100 |
| apc_paid.value | 2100 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2100 |
| concepts[0].id | https://openalex.org/C79337645 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8082432746887207 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[0].display_name | Outlier |
| concepts[1].id | https://openalex.org/C739882 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7952207922935486 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[1].display_name | Anomaly detection |
| concepts[2].id | https://openalex.org/C73555534 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7534533739089966 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[2].display_name | Cluster analysis |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.7229930758476257 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6817348003387451 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C35525427 |
| concepts[5].level | 2 |
| concepts[5].score | 0.660658061504364 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q745881 |
| concepts[5].display_name | Intrusion detection system |
| concepts[6].id | https://openalex.org/C46576248 |
| concepts[6].level | 5 |
| concepts[6].score | 0.4914003610610962 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1114630 |
| concepts[6].display_name | DBSCAN |
| concepts[7].id | https://openalex.org/C169029474 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4853609800338745 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q387942 |
| concepts[7].display_name | Local outlier factor |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4653881788253784 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44778522849082947 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C182590292 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42532503604888916 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q989632 |
| concepts[10].display_name | Network security |
| concepts[11].id | https://openalex.org/C33704608 |
| concepts[11].level | 4 |
| concepts[11].score | 0.37594226002693176 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5014717 |
| concepts[11].display_name | CURE data clustering algorithm |
| concepts[12].id | https://openalex.org/C17212007 |
| concepts[12].level | 3 |
| concepts[12].score | 0.3133801817893982 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5511111 |
| concepts[12].display_name | Fuzzy clustering |
| concepts[13].id | https://openalex.org/C111919701 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[13].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/outlier |
| keywords[0].score | 0.8082432746887207 |
| keywords[0].display_name | Outlier |
| keywords[1].id | https://openalex.org/keywords/anomaly-detection |
| keywords[1].score | 0.7952207922935486 |
| keywords[1].display_name | Anomaly detection |
| keywords[2].id | https://openalex.org/keywords/cluster-analysis |
| keywords[2].score | 0.7534533739089966 |
| keywords[2].display_name | Cluster analysis |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.7229930758476257 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.6817348003387451 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/intrusion-detection-system |
| keywords[5].score | 0.660658061504364 |
| keywords[5].display_name | Intrusion detection system |
| keywords[6].id | https://openalex.org/keywords/dbscan |
| keywords[6].score | 0.4914003610610962 |
| keywords[6].display_name | DBSCAN |
| keywords[7].id | https://openalex.org/keywords/local-outlier-factor |
| keywords[7].score | 0.4853609800338745 |
| keywords[7].display_name | Local outlier factor |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.4653881788253784 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.44778522849082947 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/network-security |
| keywords[10].score | 0.42532503604888916 |
| keywords[10].display_name | Network security |
| keywords[11].id | https://openalex.org/keywords/cure-data-clustering-algorithm |
| keywords[11].score | 0.37594226002693176 |
| keywords[11].display_name | CURE data clustering algorithm |
| keywords[12].id | https://openalex.org/keywords/fuzzy-clustering |
| keywords[12].score | 0.3133801817893982 |
| keywords[12].display_name | Fuzzy clustering |
| language | en |
| locations[0].id | doi:10.1155/2021/5558860 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S96783963 |
| locations[0].source.issn | 1687-725X, 1687-7268 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1687-725X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/js/2021/5558860.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Sensors |
| locations[0].landing_page_url | https://doi.org/10.1155/2021/5558860 |
| locations[1].id | pmh:oai:doaj.org/article:0c3af36a27904ba9825016774105ec4f |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Sensors, Vol 2021 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/0c3af36a27904ba9825016774105ec4f |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100356739 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3126-0641 |
| authorships[0].author.display_name | Yajing Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I170751988 |
| authorships[0].affiliations[0].raw_affiliation_string | Internet of Things Technology Department, Shanxi Vocational &Technical College of Finance & Trade, Taiyuan, 030031 Shanxi, China |
| authorships[0].institutions[0].id | https://openalex.org/I170751988 |
| authorships[0].institutions[0].ror | https://ror.org/04nte7y58 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I170751988 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shanxi University of Finance and Economics |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yajing Wang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Internet of Things Technology Department, Shanxi Vocational &Technical College of Finance & Trade, Taiyuan, 030031 Shanxi, China |
| authorships[1].author.id | https://openalex.org/A5101650745 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4270-0999 |
| authorships[1].author.display_name | Ma Juan |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I170751988 |
| authorships[1].affiliations[0].raw_affiliation_string | Internet of Things Technology Department, Shanxi Vocational &Technical College of Finance & Trade, Taiyuan, 030031 Shanxi, China |
| authorships[1].institutions[0].id | https://openalex.org/I170751988 |
| authorships[1].institutions[0].ror | https://ror.org/04nte7y58 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I170751988 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shanxi University of Finance and Economics |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Juan Ma |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Internet of Things Technology Department, Shanxi Vocational &Technical College of Finance & Trade, Taiyuan, 030031 Shanxi, China |
| authorships[2].author.id | https://openalex.org/A5011925762 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4990-5252 |
| authorships[2].author.display_name | Ashutosh Sharma |
| authorships[2].countries | RU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I137534880 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Computer Technology and Information Security, Southern Federal University, Russia |
| authorships[2].institutions[0].id | https://openalex.org/I137534880 |
| authorships[2].institutions[0].ror | https://ror.org/01tv9ph92 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I137534880 |
| authorships[2].institutions[0].country_code | RU |
| authorships[2].institutions[0].display_name | Southern Federal University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ashutosh Sharma |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Computer Technology and Information Security, Southern Federal University, Russia |
| authorships[3].author.id | https://openalex.org/A5054183825 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7676-9014 |
| authorships[3].author.display_name | Pradeep Kumar Singh |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4387154809 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of CSE, ABES Engineering College, Ghaziabad, Uttar Pradesh, India |
| authorships[3].institutions[0].id | https://openalex.org/I4387154809 |
| authorships[3].institutions[0].ror | https://ror.org/04hp0cf98 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4387154809 |
| authorships[3].institutions[0].country_code | |
| authorships[3].institutions[0].display_name | ABES Engineering College |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pradeep Kumar Singh |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of CSE, ABES Engineering College, Ghaziabad, Uttar Pradesh, India |
| authorships[4].author.id | https://openalex.org/A5060122615 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0732-1478 |
| authorships[4].author.display_name | Gurjot Singh Gaba |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I110360157 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Electronics and Electrical Engineering, Lovely Professional University, Phagwara, Punjab 144411, India |
| authorships[4].institutions[0].id | https://openalex.org/I110360157 |
| authorships[4].institutions[0].ror | https://ror.org/00et6q107 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I110360157 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Lovely Professional University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Gurjot Singh Gaba |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Electronics and Electrical Engineering, Lovely Professional University, Phagwara, Punjab 144411, India |
| authorships[5].author.id | https://openalex.org/A5045359397 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6019-7245 |
| authorships[5].author.display_name | Mehedi Masud |
| authorships[5].countries | SA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I179331831 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer Science, College of Computers and Information Technology, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia |
| authorships[5].institutions[0].id | https://openalex.org/I179331831 |
| authorships[5].institutions[0].ror | https://ror.org/014g1a453 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I179331831 |
| authorships[5].institutions[0].country_code | SA |
| authorships[5].institutions[0].display_name | Taif University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Mehedi Masud |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Department of Computer Science, College of Computers and Information Technology, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia |
| authorships[6].author.id | https://openalex.org/A5020079556 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2417-4374 |
| authorships[6].author.display_name | Mohammed Baz |
| authorships[6].countries | SA |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I179331831 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Computer Engineering, College of Computer and Information Technology, Taif University, PO Box. 11099, Taif 21994, Saudi Arabia |
| authorships[6].institutions[0].id | https://openalex.org/I179331831 |
| authorships[6].institutions[0].ror | https://ror.org/014g1a453 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I179331831 |
| authorships[6].institutions[0].country_code | SA |
| authorships[6].institutions[0].display_name | Taif University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Mohammed Baz |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Computer Engineering, College of Computer and Information Technology, Taif University, PO Box. 11099, Taif 21994, Saudi Arabia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/js/2021/5558860.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Exhaustive Research on the Application of Intrusion Detection Technology in Computer Network Security in Sensor Networks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13647 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9853000044822693 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | AI and Big Data Applications |
| related_works | https://openalex.org/W2394193399, https://openalex.org/W2054669762, https://openalex.org/W2387373525, https://openalex.org/W2809859387, https://openalex.org/W3134385809, https://openalex.org/W2353158678, https://openalex.org/W2392255773, https://openalex.org/W2140539164, https://openalex.org/W2384509060, https://openalex.org/W2998469710 |
| cited_by_count | 52 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 13 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 24 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1155/2021/5558860 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S96783963 |
| best_oa_location.source.issn | 1687-725X, 1687-7268 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1687-725X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/js/2021/5558860.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2021/5558860 |
| primary_location.id | doi:10.1155/2021/5558860 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S96783963 |
| primary_location.source.issn | 1687-725X, 1687-7268 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1687-725X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/js/2021/5558860.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Sensors |
| primary_location.landing_page_url | https://doi.org/10.1155/2021/5558860 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3116843489, https://openalex.org/W3158616336, https://openalex.org/W2678934292, https://openalex.org/W2998386203, https://openalex.org/W2994537010, https://openalex.org/W3102598125, https://openalex.org/W2948753392, https://openalex.org/W2017420094, https://openalex.org/W2662723915, https://openalex.org/W3158059720, https://openalex.org/W3163508094, https://openalex.org/W2792850657, https://openalex.org/W2899651170, https://openalex.org/W3039859200, https://openalex.org/W2791852540, https://openalex.org/W2967111403, https://openalex.org/W2885199066, https://openalex.org/W2808173391, https://openalex.org/W2989951678, https://openalex.org/W2966165780, https://openalex.org/W2766312160, https://openalex.org/W2964200838, https://openalex.org/W2997414109, https://openalex.org/W2886020981, https://openalex.org/W3027747421, https://openalex.org/W2974564554, https://openalex.org/W2749726558, https://openalex.org/W2944992190, https://openalex.org/W3144299160, https://openalex.org/W3152302345, https://openalex.org/W3135280315, https://openalex.org/W3131468283, https://openalex.org/W3119264633, https://openalex.org/W3136493461, https://openalex.org/W3138948977, https://openalex.org/W2776733919, https://openalex.org/W2996463159, https://openalex.org/W3018608015 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 51, 83, 173, 232 |
| abstract_inverted_index.In | 97 |
| abstract_inverted_index.an | 73 |
| abstract_inverted_index.as | 67 |
| abstract_inverted_index.at | 14 |
| abstract_inverted_index.by | 22, 47 |
| abstract_inverted_index.in | 4, 40, 127, 164, 249 |
| abstract_inverted_index.is | 2, 12, 72, 106, 111 |
| abstract_inverted_index.it | 49, 71, 217 |
| abstract_inverted_index.of | 53, 79, 82, 100, 117, 122, 141, 202 |
| abstract_inverted_index.on | 34, 90, 135, 143, 192, 226 |
| abstract_inverted_index.to | 43, 76, 114, 210, 245 |
| abstract_inverted_index.The | 61, 120, 156 |
| abstract_inverted_index.and | 19, 29, 86, 108, 151, 171 |
| abstract_inverted_index.are | 38, 95 |
| abstract_inverted_index.can | 167 |
| abstract_inverted_index.due | 244 |
| abstract_inverted_index.for | 153 |
| abstract_inverted_index.has | 172, 187 |
| abstract_inverted_index.its | 20 |
| abstract_inverted_index.not | 230 |
| abstract_inverted_index.the | 57, 77, 91, 98, 109, 115, 123, 133, 139, 161, 178, 182, 188, 193, 199, 203, 211, 221, 238 |
| abstract_inverted_index.was | 218 |
| abstract_inverted_index.This | 145 |
| abstract_inverted_index.best | 189 |
| abstract_inverted_index.data | 84 |
| abstract_inverted_index.does | 229 |
| abstract_inverted_index.good | 174 |
| abstract_inverted_index.into | 50 |
| abstract_inverted_index.lies | 126 |
| abstract_inverted_index.real | 148 |
| abstract_inverted_index.show | 159 |
| abstract_inverted_index.that | 160, 181, 220 |
| abstract_inverted_index.they | 236 |
| abstract_inverted_index.this | 10, 41, 165 |
| abstract_inverted_index.thus | 137 |
| abstract_inverted_index.uses | 63, 147 |
| abstract_inverted_index.vast | 103 |
| abstract_inverted_index.work | 11, 42 |
| abstract_inverted_index.Thus, | 235 |
| abstract_inverted_index.aimed | 13 |
| abstract_inverted_index.based | 33, 225 |
| abstract_inverted_index.glass | 152 |
| abstract_inverted_index.graph | 118 |
| abstract_inverted_index.other | 212 |
| abstract_inverted_index.paper | 166 |
| abstract_inverted_index.prior | 104 |
| abstract_inverted_index.using | 56 |
| abstract_inverted_index.where | 93 |
| abstract_inverted_index.while | 130 |
| abstract_inverted_index.added, | 107 |
| abstract_inverted_index.caused | 243 |
| abstract_inverted_index.detect | 169 |
| abstract_inverted_index.effect | 191 |
| abstract_inverted_index.judges | 69 |
| abstract_inverted_index.mining | 54, 228 |
| abstract_inverted_index.normal | 247 |
| abstract_inverted_index.number | 78 |
| abstract_inverted_index.point, | 85 |
| abstract_inverted_index.shared | 35, 64 |
| abstract_inverted_index.Outlier | 27 |
| abstract_inverted_index.address | 44 |
| abstract_inverted_index.anomaly | 214, 222, 240 |
| abstract_inverted_index.article | 146 |
| abstract_inverted_index.clearly | 197 |
| abstract_inverted_index.crucial | 3 |
| abstract_inverted_index.current | 239 |
| abstract_inverted_index.dataset | 92, 110, 194 |
| abstract_inverted_index.effect. | 176 |
| abstract_inverted_index.issues; | 8 |
| abstract_inverted_index.method, | 216 |
| abstract_inverted_index.nearest | 36, 65, 80 |
| abstract_inverted_index.network | 6, 16, 58 |
| abstract_inverted_index.novelty | 121 |
| abstract_inverted_index.outlier | 74, 128, 183, 204, 227 |
| abstract_inverted_index.problem | 52 |
| abstract_inverted_index.process | 99 |
| abstract_inverted_index.require | 231 |
| abstract_inverted_index.results | 158 |
| abstract_inverted_index.reveals | 180 |
| abstract_inverted_index.various | 24 |
| abstract_inverted_index.whether | 70 |
| abstract_inverted_index.without | 195 |
| abstract_inverted_index.avoiding | 132 |
| abstract_inverted_index.behavior | 59 |
| abstract_inverted_index.compared | 209 |
| abstract_inverted_index.computer | 5 |
| abstract_inverted_index.dataset. | 60 |
| abstract_inverted_index.deleted. | 96 |
| abstract_inverted_index.outliers | 55, 94, 142, 170 |
| abstract_inverted_index.overcome | 237 |
| abstract_inverted_index.patterns | 248 |
| abstract_inverted_index.performs | 87 |
| abstract_inverted_index.problems | 242 |
| abstract_inverted_index.process. | 234 |
| abstract_inverted_index.proposed | 39, 124, 163 |
| abstract_inverted_index.revealed | 219 |
| abstract_inverted_index.samples. | 251 |
| abstract_inverted_index.security | 7, 17 |
| abstract_inverted_index.training | 233, 250 |
| abstract_inverted_index.Intrusion | 0 |
| abstract_inverted_index.SCA‐SNN | 185, 206 |
| abstract_inverted_index.according | 75, 113 |
| abstract_inverted_index.algorithm | 62, 125, 162, 186 |
| abstract_inverted_index.clustered | 112 |
| abstract_inverted_index.datasets: | 149 |
| abstract_inverted_index.detection | 1, 28, 46, 129, 215, 223, 241 |
| abstract_inverted_index.influence | 140 |
| abstract_inverted_index.intrusion | 45 |
| abstract_inverted_index.knowledge | 105 |
| abstract_inverted_index.neighbors | 37, 66, 81 |
| abstract_inverted_index.outliers, | 196 |
| abstract_inverted_index.practical | 190 |
| abstract_inverted_index.principle | 116 |
| abstract_inverted_index.proposing | 23 |
| abstract_inverted_index.purposes. | 155 |
| abstract_inverted_index.algorithm. | 207 |
| abstract_inverted_index.algorithms | 32 |
| abstract_inverted_index.clustering | 31, 89, 175, 200 |
| abstract_inverted_index.converting | 48 |
| abstract_inverted_index.dependence | 134 |
| abstract_inverted_index.incomplete | 246 |
| abstract_inverted_index.maximizing | 15 |
| abstract_inverted_index.preventive | 25 |
| abstract_inverted_index.protection | 18 |
| abstract_inverted_index.simulation | 154, 157 |
| abstract_inverted_index.technology | 224 |
| abstract_inverted_index.therefore, | 9 |
| abstract_inverted_index.validating | 198 |
| abstract_inverted_index.clustering, | 102 |
| abstract_inverted_index.clustering. | 144 |
| abstract_inverted_index.effectively | 131, 168 |
| abstract_inverted_index.eliminating | 138 |
| abstract_inverted_index.improvement | 21 |
| abstract_inverted_index.parameters, | 136 |
| abstract_inverted_index.performance | 201 |
| abstract_inverted_index.similarity, | 68 |
| abstract_inverted_index.techniques. | 26 |
| abstract_inverted_index.Furthermore, | 177, 208 |
| abstract_inverted_index.lypmphography | 150 |
| abstract_inverted_index.segmentation. | 119 |
| abstract_inverted_index.semisupervised | 30, 88, 101 |
| abstract_inverted_index.experimentation | 179 |
| abstract_inverted_index.detection‐based | 184, 205 |
| abstract_inverted_index.state‐of‐the‐art | 213 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5100356739, https://openalex.org/A5045359397 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I170751988, https://openalex.org/I179331831 |
| citation_normalized_percentile.value | 0.98680714 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |