An explainable AI (XAI) model for landslide susceptibility modeling Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.asoc.2023.110324
Landslides are among the most devastating natural hazards, severely impacting human lives and damaging property and infrastructure. Landslide susceptibility maps, which help to identify which regions in a given area are at greater risk of a landslide occurring, are a key tool for effective mitigation. Research in this field has grown immensely, ranging from quantitative to deterministic approaches, with a recent surge in machine learning (ML)-based computational models. The development of ML models, in particular, has undergone a meteoritic rise in the last decade, contributing to the successful development of accurate susceptibility maps. However, despite their success, these models are rarely used by stakeholders owing to their “black box” nature. Hence, it is crucial to explain the results, thus providing greater transparency for the use of such models. To address this gap, the present work introduces the use of an ML-based explainable algorithm, SHapley Additive exPlanations (SHAP), for landslide susceptibility modeling. A convolutional neural network model was used conducted in the CheongJu region in South Korea. A total of 519 landslide locations were examined with 16 landslide-affected variables, of which 70% was used for training and 30% for testing, and the model achieved an accuracy of 89%. Further, the comparison was performed using Support Vector Machine mode, which achieved an accuracy of 84%. The SHAP plots showed variations in feature interactions for both landslide and non-landslide locations, thus providing more clarity as to how the model achieves a specific result. The SHAP dependence plots explained the relationship between altitude and slope, showing a negative relationship with altitude and a positive relationship with slope. This is the first use of an explainable ML model in landslide susceptibility modeling, and we argue that future works should include aspects of explainability to open up the possibility of developing a transferable artificial intelligence model.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.asoc.2023.110324
- OA Status
- hybrid
- Cited By
- 146
- References
- 68
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4366981465
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4366981465Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.asoc.2023.110324Digital Object Identifier
- Title
-
An explainable AI (XAI) model for landslide susceptibility modelingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-25Full publication date if available
- Authors
-
Biswajeet Pradhan, Abhirup Dikshit, Saro Lee, Hyesu KimList of authors in order
- Landing page
-
https://doi.org/10.1016/j.asoc.2023.110324Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.asoc.2023.110324Direct OA link when available
- Concepts
-
Landslide, Computer science, CLARITY, Artificial neural network, Property (philosophy), Artificial intelligence, Machine learning, Cartography, Data mining, Geology, Geography, Geomorphology, Chemistry, Philosophy, Epistemology, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
146Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 70, 2024: 55, 2023: 21Per-year citation counts (last 5 years)
- References (count)
-
68Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4366981465 |
|---|---|
| doi | https://doi.org/10.1016/j.asoc.2023.110324 |
| ids.doi | https://doi.org/10.1016/j.asoc.2023.110324 |
| ids.openalex | https://openalex.org/W4366981465 |
| fwci | 84.07600326 |
| type | article |
| title | An explainable AI (XAI) model for landslide susceptibility modeling |
| biblio.issue | |
| biblio.volume | 142 |
| biblio.last_page | 110324 |
| biblio.first_page | 110324 |
| topics[0].id | https://openalex.org/T10535 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2308 |
| topics[0].subfield.display_name | Management, Monitoring, Policy and Law |
| topics[0].display_name | Landslides and related hazards |
| topics[1].id | https://openalex.org/T12729 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9890999794006348 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Tree Root and Stability Studies |
| topics[2].id | https://openalex.org/T10930 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9876999855041504 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2306 |
| topics[2].subfield.display_name | Global and Planetary Change |
| topics[2].display_name | Flood Risk Assessment and Management |
| is_xpac | False |
| apc_list.value | 3350 |
| apc_list.currency | USD |
| apc_list.value_usd | 3350 |
| apc_paid.value | 3350 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3350 |
| concepts[0].id | https://openalex.org/C186295008 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9330101013183594 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q167903 |
| concepts[0].display_name | Landslide |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6349065899848938 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2777146004 |
| concepts[2].level | 2 |
| concepts[2].score | 0.47577133774757385 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q14949826 |
| concepts[2].display_name | CLARITY |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.43737685680389404 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C189950617 |
| concepts[4].level | 2 |
| concepts[4].score | 0.41367238759994507 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q937228 |
| concepts[4].display_name | Property (philosophy) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.38844266533851624 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.38195884227752686 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C58640448 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3474283814430237 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[7].display_name | Cartography |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.33740711212158203 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C127313418 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2755889296531677 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[9].display_name | Geology |
| concepts[10].id | https://openalex.org/C205649164 |
| concepts[10].level | 0 |
| concepts[10].score | 0.1951378881931305 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[10].display_name | Geography |
| concepts[11].id | https://openalex.org/C114793014 |
| concepts[11].level | 1 |
| concepts[11].score | 0.13920974731445312 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q52109 |
| concepts[11].display_name | Geomorphology |
| concepts[12].id | https://openalex.org/C185592680 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[12].display_name | Chemistry |
| concepts[13].id | https://openalex.org/C138885662 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[13].display_name | Philosophy |
| concepts[14].id | https://openalex.org/C111472728 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[14].display_name | Epistemology |
| concepts[15].id | https://openalex.org/C55493867 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[15].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/landslide |
| keywords[0].score | 0.9330101013183594 |
| keywords[0].display_name | Landslide |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6349065899848938 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/clarity |
| keywords[2].score | 0.47577133774757385 |
| keywords[2].display_name | CLARITY |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.43737685680389404 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/property |
| keywords[4].score | 0.41367238759994507 |
| keywords[4].display_name | Property (philosophy) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.38844266533851624 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.38195884227752686 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/cartography |
| keywords[7].score | 0.3474283814430237 |
| keywords[7].display_name | Cartography |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.33740711212158203 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/geology |
| keywords[9].score | 0.2755889296531677 |
| keywords[9].display_name | Geology |
| keywords[10].id | https://openalex.org/keywords/geography |
| keywords[10].score | 0.1951378881931305 |
| keywords[10].display_name | Geography |
| keywords[11].id | https://openalex.org/keywords/geomorphology |
| keywords[11].score | 0.13920974731445312 |
| keywords[11].display_name | Geomorphology |
| language | en |
| locations[0].id | doi:10.1016/j.asoc.2023.110324 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S140556538 |
| locations[0].source.issn | 1568-4946, 1872-9681 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1568-4946 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Applied Soft Computing |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Soft Computing |
| locations[0].landing_page_url | https://doi.org/10.1016/j.asoc.2023.110324 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5059040421 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9863-2054 |
| authorships[0].author.display_name | Biswajeet Pradhan |
| authorships[0].countries | AU, MY |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I114017466 |
| authorships[0].affiliations[0].raw_affiliation_string | Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I885383172 |
| authorships[0].affiliations[1].raw_affiliation_string | Earth Observation Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia |
| authorships[0].institutions[0].id | https://openalex.org/I114017466 |
| authorships[0].institutions[0].ror | https://ror.org/03f0f6041 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I114017466 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | University of Technology Sydney |
| authorships[0].institutions[1].id | https://openalex.org/I885383172 |
| authorships[0].institutions[1].ror | https://ror.org/00bw8d226 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I885383172 |
| authorships[0].institutions[1].country_code | MY |
| authorships[0].institutions[1].display_name | National University of Malaysia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Biswajeet Pradhan |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia, Earth Observation Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia |
| authorships[1].author.id | https://openalex.org/A5058731208 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2876-4080 |
| authorships[1].author.display_name | Abhirup Dikshit |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I114017466 |
| authorships[1].affiliations[0].raw_affiliation_string | Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I114017466 |
| authorships[1].institutions[0].ror | https://ror.org/03f0f6041 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I114017466 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | University of Technology Sydney |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Abhirup Dikshit |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia |
| authorships[2].author.id | https://openalex.org/A5077439959 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0409-8263 |
| authorships[2].author.display_name | Saro Lee |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I88761825 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Resources Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210142421 |
| authorships[2].affiliations[1].raw_affiliation_string | Geoscience Data Center, Korea Institute of Geoscience and Mineral Resources (KIGAM), 124 Gwahang-no, Yuseong-gu, Daejeon 34132, South Korea |
| authorships[2].institutions[0].id | https://openalex.org/I4210142421 |
| authorships[2].institutions[0].ror | https://ror.org/044k0pw44 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210142421 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Korea Institute of Geoscience and Mineral Resources |
| authorships[2].institutions[1].id | https://openalex.org/I88761825 |
| authorships[2].institutions[1].ror | https://ror.org/000qzf213 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I88761825 |
| authorships[2].institutions[1].country_code | KR |
| authorships[2].institutions[1].display_name | Korea University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Saro Lee |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Resources Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea, Geoscience Data Center, Korea Institute of Geoscience and Mineral Resources (KIGAM), 124 Gwahang-no, Yuseong-gu, Daejeon 34132, South Korea |
| authorships[3].author.id | https://openalex.org/A5101608527 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4639-0273 |
| authorships[3].author.display_name | Hyesu Kim |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I196345858 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Astronomy, Space Science and Geology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea |
| authorships[3].institutions[0].id | https://openalex.org/I196345858 |
| authorships[3].institutions[0].ror | https://ror.org/0227as991 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I196345858 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Chungnam National University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Hyesu Kim |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Astronomy, Space Science and Geology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.asoc.2023.110324 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An explainable AI (XAI) model for landslide susceptibility modeling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10535 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2308 |
| primary_topic.subfield.display_name | Management, Monitoring, Policy and Law |
| primary_topic.display_name | Landslides and related hazards |
| related_works | https://openalex.org/W2086338133, https://openalex.org/W4367679314, https://openalex.org/W225526533, https://openalex.org/W2078361494, https://openalex.org/W2009234990, https://openalex.org/W2389676928, https://openalex.org/W4244083766, https://openalex.org/W2091016074, https://openalex.org/W2023583523, https://openalex.org/W2134615400 |
| cited_by_count | 146 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 70 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 55 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 21 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.asoc.2023.110324 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S140556538 |
| best_oa_location.source.issn | 1568-4946, 1872-9681 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1568-4946 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Applied Soft Computing |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Soft Computing |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.asoc.2023.110324 |
| primary_location.id | doi:10.1016/j.asoc.2023.110324 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S140556538 |
| primary_location.source.issn | 1568-4946, 1872-9681 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1568-4946 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Applied Soft Computing |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Soft Computing |
| primary_location.landing_page_url | https://doi.org/10.1016/j.asoc.2023.110324 |
| publication_date | 2023-04-25 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2054512946, https://openalex.org/W2346466032, https://openalex.org/W2509507403, https://openalex.org/W2804735378, https://openalex.org/W2793831793, https://openalex.org/W3032913569, https://openalex.org/W2080134555, https://openalex.org/W2034316820, https://openalex.org/W3087676330, https://openalex.org/W3015351360, https://openalex.org/W2331149499, https://openalex.org/W1983676031, https://openalex.org/W2789555074, https://openalex.org/W2567326027, https://openalex.org/W6753828322, https://openalex.org/W2135194391, https://openalex.org/W2257979135, https://openalex.org/W2574978968, https://openalex.org/W2919115771, https://openalex.org/W2794274366, https://openalex.org/W3001525167, https://openalex.org/W2980376317, https://openalex.org/W2915483120, https://openalex.org/W3081183014, https://openalex.org/W3173991935, https://openalex.org/W3181256602, https://openalex.org/W2996713777, https://openalex.org/W3195433497, https://openalex.org/W2909545512, https://openalex.org/W2021765639, https://openalex.org/W2580406454, https://openalex.org/W2792546905, https://openalex.org/W2461102195, https://openalex.org/W2266102527, https://openalex.org/W2015595462, https://openalex.org/W2589351175, https://openalex.org/W4211214389, https://openalex.org/W2112796928, https://openalex.org/W6770012518, https://openalex.org/W4239510810, https://openalex.org/W2897555073, https://openalex.org/W6722226382, https://openalex.org/W6797726680, https://openalex.org/W3129402291, https://openalex.org/W2076063813, https://openalex.org/W6674330103, https://openalex.org/W2158698691, https://openalex.org/W2895196240, https://openalex.org/W3108410302, https://openalex.org/W6759526898, https://openalex.org/W2730808126, https://openalex.org/W6730035438, https://openalex.org/W2963095307, https://openalex.org/W4223472728, https://openalex.org/W2945976633, https://openalex.org/W6726258750, https://openalex.org/W6736518430, https://openalex.org/W2889223999, https://openalex.org/W4249009392, https://openalex.org/W3014504517, https://openalex.org/W2962862931, https://openalex.org/W2915041174, https://openalex.org/W2095705004, https://openalex.org/W4402843978, https://openalex.org/W2487770199, https://openalex.org/W4396219753, https://openalex.org/W2914874661, https://openalex.org/W2559655401 |
| referenced_works_count | 68 |
| abstract_inverted_index.A | 151, 166 |
| abstract_inverted_index.a | 27, 35, 39, 59, 77, 237, 252, 258, 295 |
| abstract_inverted_index.16 | 175 |
| abstract_inverted_index.ML | 71, 271 |
| abstract_inverted_index.To | 128 |
| abstract_inverted_index.an | 139, 193, 209, 269 |
| abstract_inverted_index.as | 231 |
| abstract_inverted_index.at | 31 |
| abstract_inverted_index.by | 102 |
| abstract_inverted_index.in | 26, 46, 62, 73, 80, 159, 163, 218, 273 |
| abstract_inverted_index.is | 112, 264 |
| abstract_inverted_index.it | 111 |
| abstract_inverted_index.of | 34, 70, 89, 125, 138, 168, 178, 195, 211, 268, 286, 293 |
| abstract_inverted_index.to | 22, 55, 85, 105, 114, 232, 288 |
| abstract_inverted_index.up | 290 |
| abstract_inverted_index.we | 278 |
| abstract_inverted_index.30% | 186 |
| abstract_inverted_index.519 | 169 |
| abstract_inverted_index.70% | 180 |
| abstract_inverted_index.The | 68, 213, 240 |
| abstract_inverted_index.and | 12, 15, 185, 189, 224, 249, 257, 277 |
| abstract_inverted_index.are | 1, 30, 38, 99 |
| abstract_inverted_index.for | 42, 122, 147, 183, 187, 221 |
| abstract_inverted_index.has | 49, 75 |
| abstract_inverted_index.how | 233 |
| abstract_inverted_index.key | 40 |
| abstract_inverted_index.the | 3, 81, 86, 116, 123, 132, 136, 160, 190, 198, 234, 245, 265, 291 |
| abstract_inverted_index.use | 124, 137, 267 |
| abstract_inverted_index.was | 156, 181, 200 |
| abstract_inverted_index.84%. | 212 |
| abstract_inverted_index.89%. | 196 |
| abstract_inverted_index.SHAP | 214, 241 |
| abstract_inverted_index.This | 263 |
| abstract_inverted_index.area | 29 |
| abstract_inverted_index.both | 222 |
| abstract_inverted_index.from | 53 |
| abstract_inverted_index.gap, | 131 |
| abstract_inverted_index.help | 21 |
| abstract_inverted_index.last | 82 |
| abstract_inverted_index.more | 229 |
| abstract_inverted_index.most | 4 |
| abstract_inverted_index.open | 289 |
| abstract_inverted_index.rise | 79 |
| abstract_inverted_index.risk | 33 |
| abstract_inverted_index.such | 126 |
| abstract_inverted_index.that | 280 |
| abstract_inverted_index.this | 47, 130 |
| abstract_inverted_index.thus | 118, 227 |
| abstract_inverted_index.tool | 41 |
| abstract_inverted_index.used | 101, 157, 182 |
| abstract_inverted_index.were | 172 |
| abstract_inverted_index.with | 58, 174, 255, 261 |
| abstract_inverted_index.work | 134 |
| abstract_inverted_index.South | 164 |
| abstract_inverted_index.among | 2 |
| abstract_inverted_index.argue | 279 |
| abstract_inverted_index.field | 48 |
| abstract_inverted_index.first | 266 |
| abstract_inverted_index.given | 28 |
| abstract_inverted_index.grown | 50 |
| abstract_inverted_index.human | 10 |
| abstract_inverted_index.lives | 11 |
| abstract_inverted_index.maps, | 19 |
| abstract_inverted_index.maps. | 92 |
| abstract_inverted_index.mode, | 206 |
| abstract_inverted_index.model | 155, 191, 235, 272 |
| abstract_inverted_index.owing | 104 |
| abstract_inverted_index.plots | 215, 243 |
| abstract_inverted_index.surge | 61 |
| abstract_inverted_index.their | 95, 106 |
| abstract_inverted_index.these | 97 |
| abstract_inverted_index.total | 167 |
| abstract_inverted_index.using | 202 |
| abstract_inverted_index.which | 20, 24, 179, 207 |
| abstract_inverted_index.works | 282 |
| abstract_inverted_index.Hence, | 110 |
| abstract_inverted_index.Korea. | 165 |
| abstract_inverted_index.Vector | 204 |
| abstract_inverted_index.box” | 108 |
| abstract_inverted_index.future | 281 |
| abstract_inverted_index.model. | 299 |
| abstract_inverted_index.models | 98 |
| abstract_inverted_index.neural | 153 |
| abstract_inverted_index.rarely | 100 |
| abstract_inverted_index.recent | 60 |
| abstract_inverted_index.region | 162 |
| abstract_inverted_index.should | 283 |
| abstract_inverted_index.showed | 216 |
| abstract_inverted_index.slope, | 250 |
| abstract_inverted_index.slope. | 262 |
| abstract_inverted_index.(SHAP), | 146 |
| abstract_inverted_index.Machine | 205 |
| abstract_inverted_index.SHapley | 143 |
| abstract_inverted_index.Support | 203 |
| abstract_inverted_index.address | 129 |
| abstract_inverted_index.aspects | 285 |
| abstract_inverted_index.between | 247 |
| abstract_inverted_index.clarity | 230 |
| abstract_inverted_index.crucial | 113 |
| abstract_inverted_index.decade, | 83 |
| abstract_inverted_index.despite | 94 |
| abstract_inverted_index.explain | 115 |
| abstract_inverted_index.feature | 219 |
| abstract_inverted_index.greater | 32, 120 |
| abstract_inverted_index.include | 284 |
| abstract_inverted_index.machine | 63 |
| abstract_inverted_index.models, | 72 |
| abstract_inverted_index.models. | 67, 127 |
| abstract_inverted_index.natural | 6 |
| abstract_inverted_index.nature. | 109 |
| abstract_inverted_index.network | 154 |
| abstract_inverted_index.present | 133 |
| abstract_inverted_index.ranging | 52 |
| abstract_inverted_index.regions | 25 |
| abstract_inverted_index.result. | 239 |
| abstract_inverted_index.showing | 251 |
| abstract_inverted_index.Additive | 144 |
| abstract_inverted_index.CheongJu | 161 |
| abstract_inverted_index.Further, | 197 |
| abstract_inverted_index.However, | 93 |
| abstract_inverted_index.ML-based | 140 |
| abstract_inverted_index.Research | 45 |
| abstract_inverted_index.accuracy | 194, 210 |
| abstract_inverted_index.accurate | 90 |
| abstract_inverted_index.achieved | 192, 208 |
| abstract_inverted_index.achieves | 236 |
| abstract_inverted_index.altitude | 248, 256 |
| abstract_inverted_index.damaging | 13 |
| abstract_inverted_index.examined | 173 |
| abstract_inverted_index.hazards, | 7 |
| abstract_inverted_index.identify | 23 |
| abstract_inverted_index.learning | 64 |
| abstract_inverted_index.negative | 253 |
| abstract_inverted_index.positive | 259 |
| abstract_inverted_index.property | 14 |
| abstract_inverted_index.results, | 117 |
| abstract_inverted_index.severely | 8 |
| abstract_inverted_index.specific | 238 |
| abstract_inverted_index.success, | 96 |
| abstract_inverted_index.testing, | 188 |
| abstract_inverted_index.training | 184 |
| abstract_inverted_index.“black | 107 |
| abstract_inverted_index.Landslide | 17 |
| abstract_inverted_index.conducted | 158 |
| abstract_inverted_index.effective | 43 |
| abstract_inverted_index.explained | 244 |
| abstract_inverted_index.impacting | 9 |
| abstract_inverted_index.landslide | 36, 148, 170, 223, 274 |
| abstract_inverted_index.locations | 171 |
| abstract_inverted_index.modeling, | 276 |
| abstract_inverted_index.modeling. | 150 |
| abstract_inverted_index.performed | 201 |
| abstract_inverted_index.providing | 119, 228 |
| abstract_inverted_index.undergone | 76 |
| abstract_inverted_index.(ML)-based | 65 |
| abstract_inverted_index.Landslides | 0 |
| abstract_inverted_index.algorithm, | 142 |
| abstract_inverted_index.artificial | 297 |
| abstract_inverted_index.comparison | 199 |
| abstract_inverted_index.dependence | 242 |
| abstract_inverted_index.developing | 294 |
| abstract_inverted_index.immensely, | 51 |
| abstract_inverted_index.introduces | 135 |
| abstract_inverted_index.locations, | 226 |
| abstract_inverted_index.meteoritic | 78 |
| abstract_inverted_index.occurring, | 37 |
| abstract_inverted_index.successful | 87 |
| abstract_inverted_index.variables, | 177 |
| abstract_inverted_index.variations | 217 |
| abstract_inverted_index.approaches, | 57 |
| abstract_inverted_index.devastating | 5 |
| abstract_inverted_index.development | 69, 88 |
| abstract_inverted_index.explainable | 141, 270 |
| abstract_inverted_index.mitigation. | 44 |
| abstract_inverted_index.particular, | 74 |
| abstract_inverted_index.possibility | 292 |
| abstract_inverted_index.contributing | 84 |
| abstract_inverted_index.exPlanations | 145 |
| abstract_inverted_index.intelligence | 298 |
| abstract_inverted_index.interactions | 220 |
| abstract_inverted_index.quantitative | 54 |
| abstract_inverted_index.relationship | 246, 254, 260 |
| abstract_inverted_index.stakeholders | 103 |
| abstract_inverted_index.transferable | 296 |
| abstract_inverted_index.transparency | 121 |
| abstract_inverted_index.computational | 66 |
| abstract_inverted_index.convolutional | 152 |
| abstract_inverted_index.deterministic | 56 |
| abstract_inverted_index.non-landslide | 225 |
| abstract_inverted_index.explainability | 287 |
| abstract_inverted_index.susceptibility | 18, 91, 149, 275 |
| abstract_inverted_index.infrastructure. | 16 |
| abstract_inverted_index.landslide-affected | 176 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5059040421, https://openalex.org/A5077439959 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I114017466, https://openalex.org/I4210142421, https://openalex.org/I885383172, https://openalex.org/I88761825 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.6700000166893005 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.99974615 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |