An explainable deep learning approach for detection and isolation of sensor and machine faults in predictive maintenance paradigm Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1088/1361-6501/ad016b
The predictive health maintenance techniques identify the machine faults by analyzing the data collected by low-cost sensors assuming that sensors are free from any faults. However, aging and environmental condition cause sensors also be faulty, leading to incorrect interpretations of the collected data and subsequently resulting in erroneous machine health predictions. To mitigate this problem, this paper proposes a hybrid model that can differentiate between sensor and system faults. The data used for training the model is collected from a power system hardware setup by experimental procedures. A convolutional neural network (CNN) model is used to extract optimized features from the raw data automatically, which are then fed to the eXtreme Gradient Boosting (XGBoost) model for sensor and machine fault isolation with an overall accuracy of 98.15%. The data having sensor fault was then fed to a deep autoencoder, which eliminated the sensor fault components and reconstructed the data with an average root mean square error of 0.0576. Thereafter, the corrected signal was used to detect the system fault using the hybrid CNN-XGBoost model with 99.77% accuracy. Therefore, by isolating the sensor faults, the proposed technique establishes better confidence in predictive maintenance. Further, explainable AI has been utilized to interpret the model prediction in human-understandable terms in order to increase trustworthiness.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1361-6501/ad016b
- OA Status
- hybrid
- Cited By
- 10
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387445683
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387445683Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1361-6501/ad016bDigital Object Identifier
- Title
-
An explainable deep learning approach for detection and isolation of sensor and machine faults in predictive maintenance paradigmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-09Full publication date if available
- Authors
-
Aparna Sinha, Debanjan DasList of authors in order
- Landing page
-
https://doi.org/10.1088/1361-6501/ad016bPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1361-6501/ad016bDirect OA link when available
- Concepts
-
Computer science, Fault detection and isolation, Autoencoder, Convolutional neural network, Artificial intelligence, Deep learning, Gradient boosting, Artificial neural network, Machine learning, Fault (geology), Extreme learning machine, Data mining, Pattern recognition (psychology), Real-time computing, Reliability engineering, Engineering, Random forest, Seismology, Geology, ActuatorTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 6Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387445683 |
|---|---|
| doi | https://doi.org/10.1088/1361-6501/ad016b |
| ids.doi | https://doi.org/10.1088/1361-6501/ad016b |
| ids.openalex | https://openalex.org/W4387445683 |
| fwci | 2.48853101 |
| type | article |
| title | An explainable deep learning approach for detection and isolation of sensor and machine faults in predictive maintenance paradigm |
| biblio.issue | 1 |
| biblio.volume | 35 |
| biblio.last_page | 015122 |
| biblio.first_page | 015122 |
| topics[0].id | https://openalex.org/T10220 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9958000183105469 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Machine Fault Diagnosis Techniques |
| topics[1].id | https://openalex.org/T11343 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9923999905586243 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Power Transformer Diagnostics and Insulation |
| topics[2].id | https://openalex.org/T12169 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9902999997138977 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Non-Destructive Testing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7218822240829468 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C152745839 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6808338165283203 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5438153 |
| concepts[1].display_name | Fault detection and isolation |
| concepts[2].id | https://openalex.org/C101738243 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6221542358398438 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[2].display_name | Autoencoder |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5968698859214783 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5530532002449036 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5220344066619873 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C70153297 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4835779070854187 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5591907 |
| concepts[6].display_name | Gradient boosting |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46468615531921387 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4570060968399048 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C175551986 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4483611583709717 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q47089 |
| concepts[9].display_name | Fault (geology) |
| concepts[10].id | https://openalex.org/C2780150128 |
| concepts[10].level | 3 |
| concepts[10].score | 0.41372302174568176 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21948731 |
| concepts[10].display_name | Extreme learning machine |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3889194428920746 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3628036379814148 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C79403827 |
| concepts[13].level | 1 |
| concepts[13].score | 0.32920172810554504 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[13].display_name | Real-time computing |
| concepts[14].id | https://openalex.org/C200601418 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3281185030937195 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2193887 |
| concepts[14].display_name | Reliability engineering |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.12328621745109558 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C169258074 |
| concepts[16].level | 2 |
| concepts[16].score | 0.08105090260505676 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[16].display_name | Random forest |
| concepts[17].id | https://openalex.org/C165205528 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q83371 |
| concepts[17].display_name | Seismology |
| concepts[18].id | https://openalex.org/C127313418 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[18].display_name | Geology |
| concepts[19].id | https://openalex.org/C172707124 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q423488 |
| concepts[19].display_name | Actuator |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7218822240829468 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/fault-detection-and-isolation |
| keywords[1].score | 0.6808338165283203 |
| keywords[1].display_name | Fault detection and isolation |
| keywords[2].id | https://openalex.org/keywords/autoencoder |
| keywords[2].score | 0.6221542358398438 |
| keywords[2].display_name | Autoencoder |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.5968698859214783 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5530532002449036 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.5220344066619873 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/gradient-boosting |
| keywords[6].score | 0.4835779070854187 |
| keywords[6].display_name | Gradient boosting |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.46468615531921387 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.4570060968399048 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/fault |
| keywords[9].score | 0.4483611583709717 |
| keywords[9].display_name | Fault (geology) |
| keywords[10].id | https://openalex.org/keywords/extreme-learning-machine |
| keywords[10].score | 0.41372302174568176 |
| keywords[10].display_name | Extreme learning machine |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.3889194428920746 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.3628036379814148 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/real-time-computing |
| keywords[13].score | 0.32920172810554504 |
| keywords[13].display_name | Real-time computing |
| keywords[14].id | https://openalex.org/keywords/reliability-engineering |
| keywords[14].score | 0.3281185030937195 |
| keywords[14].display_name | Reliability engineering |
| keywords[15].id | https://openalex.org/keywords/engineering |
| keywords[15].score | 0.12328621745109558 |
| keywords[15].display_name | Engineering |
| keywords[16].id | https://openalex.org/keywords/random-forest |
| keywords[16].score | 0.08105090260505676 |
| keywords[16].display_name | Random forest |
| language | en |
| locations[0].id | doi:10.1088/1361-6501/ad016b |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S109302362 |
| locations[0].source.issn | 0957-0233, 1361-6501 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0957-0233 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Measurement Science and Technology |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Measurement Science and Technology |
| locations[0].landing_page_url | https://doi.org/10.1088/1361-6501/ad016b |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5103887407 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Aparna Sinha |
| authorships[0].affiliations[0].raw_affiliation_string | Electronics and Communication Engineering, IIIT–Naya Raipur, Plot-7, Sector-24, Atal Nagar, Raipur, Naya Raipur, 493661, INDIA |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Aparna Sinha |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Electronics and Communication Engineering, IIIT–Naya Raipur, Plot-7, Sector-24, Atal Nagar, Raipur, Naya Raipur, 493661, INDIA |
| authorships[1].author.id | https://openalex.org/A5068887717 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3450-9767 |
| authorships[1].author.display_name | Debanjan Das |
| authorships[1].affiliations[0].raw_affiliation_string | Electronics and Communication Engineering, IIIT–Naya Raipur, Plot-7, Sector-24, Raipur, Naya Raipur, 493661, INDIA |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Debanjan Das |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Electronics and Communication Engineering, IIIT–Naya Raipur, Plot-7, Sector-24, Raipur, Naya Raipur, 493661, INDIA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/1361-6501/ad016b |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An explainable deep learning approach for detection and isolation of sensor and machine faults in predictive maintenance paradigm |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10220 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9958000183105469 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Machine Fault Diagnosis Techniques |
| related_works | https://openalex.org/W2159052453, https://openalex.org/W3013693939, https://openalex.org/W2566616303, https://openalex.org/W3131327266, https://openalex.org/W2067443264, https://openalex.org/W4297051394, https://openalex.org/W2752972570, https://openalex.org/W2567582497, https://openalex.org/W2897701482, https://openalex.org/W2504797357 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1361-6501/ad016b |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S109302362 |
| best_oa_location.source.issn | 0957-0233, 1361-6501 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0957-0233 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Measurement Science and Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Measurement Science and Technology |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1361-6501/ad016b |
| primary_location.id | doi:10.1088/1361-6501/ad016b |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S109302362 |
| primary_location.source.issn | 0957-0233, 1361-6501 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0957-0233 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Measurement Science and Technology |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Measurement Science and Technology |
| primary_location.landing_page_url | https://doi.org/10.1088/1361-6501/ad016b |
| publication_date | 2023-10-09 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2895200754, https://openalex.org/W6811158573, https://openalex.org/W4322503145, https://openalex.org/W4315473652, https://openalex.org/W3167634146, https://openalex.org/W2091305989, https://openalex.org/W3204174347, https://openalex.org/W4307810607, https://openalex.org/W6854408771, https://openalex.org/W4376957660, https://openalex.org/W4223641466, https://openalex.org/W2956467153, https://openalex.org/W4205349656, https://openalex.org/W6854331895, https://openalex.org/W3083786792, https://openalex.org/W3022757405, https://openalex.org/W6808115924, https://openalex.org/W6797569930, https://openalex.org/W3080359734, https://openalex.org/W4205930708, https://openalex.org/W4292694365, https://openalex.org/W3203496010, https://openalex.org/W6804154929, https://openalex.org/W6846986343, https://openalex.org/W4285291864, https://openalex.org/W2062994871, https://openalex.org/W4220842428, https://openalex.org/W2940691483, https://openalex.org/W4293061168, https://openalex.org/W4285732709, https://openalex.org/W2163112722, https://openalex.org/W4226457254, https://openalex.org/W3173972455, https://openalex.org/W4211184523, https://openalex.org/W4384158781, https://openalex.org/W4384159012, https://openalex.org/W3216065183, https://openalex.org/W4310969942 |
| referenced_works_count | 38 |
| abstract_inverted_index.A | 88 |
| abstract_inverted_index.a | 59, 80, 137 |
| abstract_inverted_index.AI | 195 |
| abstract_inverted_index.To | 52 |
| abstract_inverted_index.an | 123, 151 |
| abstract_inverted_index.be | 34 |
| abstract_inverted_index.by | 10, 15, 85, 179 |
| abstract_inverted_index.in | 47, 190, 204, 207 |
| abstract_inverted_index.is | 77, 94 |
| abstract_inverted_index.of | 40, 126, 157 |
| abstract_inverted_index.to | 37, 96, 109, 136, 165, 199, 209 |
| abstract_inverted_index.The | 1, 70, 128 |
| abstract_inverted_index.and | 28, 44, 67, 118, 146 |
| abstract_inverted_index.any | 24 |
| abstract_inverted_index.are | 21, 106 |
| abstract_inverted_index.can | 63 |
| abstract_inverted_index.fed | 108, 135 |
| abstract_inverted_index.for | 73, 116 |
| abstract_inverted_index.has | 196 |
| abstract_inverted_index.raw | 102 |
| abstract_inverted_index.the | 7, 12, 41, 75, 101, 110, 142, 148, 160, 167, 171, 181, 184, 201 |
| abstract_inverted_index.was | 133, 163 |
| abstract_inverted_index.also | 33 |
| abstract_inverted_index.been | 197 |
| abstract_inverted_index.data | 13, 43, 71, 103, 129, 149 |
| abstract_inverted_index.deep | 138 |
| abstract_inverted_index.free | 22 |
| abstract_inverted_index.from | 23, 79, 100 |
| abstract_inverted_index.mean | 154 |
| abstract_inverted_index.root | 153 |
| abstract_inverted_index.that | 19, 62 |
| abstract_inverted_index.then | 107, 134 |
| abstract_inverted_index.this | 54, 56 |
| abstract_inverted_index.used | 72, 95, 164 |
| abstract_inverted_index.with | 122, 150, 175 |
| abstract_inverted_index.(CNN) | 92 |
| abstract_inverted_index.aging | 27 |
| abstract_inverted_index.cause | 31 |
| abstract_inverted_index.error | 156 |
| abstract_inverted_index.fault | 120, 132, 144, 169 |
| abstract_inverted_index.model | 61, 76, 93, 115, 174, 202 |
| abstract_inverted_index.order | 208 |
| abstract_inverted_index.paper | 57 |
| abstract_inverted_index.power | 81 |
| abstract_inverted_index.setup | 84 |
| abstract_inverted_index.terms | 206 |
| abstract_inverted_index.using | 170 |
| abstract_inverted_index.which | 105, 140 |
| abstract_inverted_index.99.77% | 176 |
| abstract_inverted_index.better | 188 |
| abstract_inverted_index.detect | 166 |
| abstract_inverted_index.faults | 9 |
| abstract_inverted_index.having | 130 |
| abstract_inverted_index.health | 3, 50 |
| abstract_inverted_index.hybrid | 60, 172 |
| abstract_inverted_index.neural | 90 |
| abstract_inverted_index.sensor | 66, 117, 131, 143, 182 |
| abstract_inverted_index.signal | 162 |
| abstract_inverted_index.square | 155 |
| abstract_inverted_index.system | 68, 82, 168 |
| abstract_inverted_index.0.0576. | 158 |
| abstract_inverted_index.98.15%. | 127 |
| abstract_inverted_index.average | 152 |
| abstract_inverted_index.between | 65 |
| abstract_inverted_index.eXtreme | 111 |
| abstract_inverted_index.extract | 97 |
| abstract_inverted_index.faults, | 183 |
| abstract_inverted_index.faults. | 25, 69 |
| abstract_inverted_index.faulty, | 35 |
| abstract_inverted_index.leading | 36 |
| abstract_inverted_index.machine | 8, 49, 119 |
| abstract_inverted_index.network | 91 |
| abstract_inverted_index.overall | 124 |
| abstract_inverted_index.sensors | 17, 20, 32 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Boosting | 113 |
| abstract_inverted_index.Further, | 193 |
| abstract_inverted_index.Gradient | 112 |
| abstract_inverted_index.However, | 26 |
| abstract_inverted_index.accuracy | 125 |
| abstract_inverted_index.assuming | 18 |
| abstract_inverted_index.features | 99 |
| abstract_inverted_index.hardware | 83 |
| abstract_inverted_index.identify | 6 |
| abstract_inverted_index.increase | 210 |
| abstract_inverted_index.low-cost | 16 |
| abstract_inverted_index.mitigate | 53 |
| abstract_inverted_index.problem, | 55 |
| abstract_inverted_index.proposed | 185 |
| abstract_inverted_index.proposes | 58 |
| abstract_inverted_index.training | 74 |
| abstract_inverted_index.utilized | 198 |
| abstract_inverted_index.(XGBoost) | 114 |
| abstract_inverted_index.accuracy. | 177 |
| abstract_inverted_index.analyzing | 11 |
| abstract_inverted_index.collected | 14, 42, 78 |
| abstract_inverted_index.condition | 30 |
| abstract_inverted_index.corrected | 161 |
| abstract_inverted_index.erroneous | 48 |
| abstract_inverted_index.incorrect | 38 |
| abstract_inverted_index.interpret | 200 |
| abstract_inverted_index.isolating | 180 |
| abstract_inverted_index.isolation | 121 |
| abstract_inverted_index.optimized | 98 |
| abstract_inverted_index.resulting | 46 |
| abstract_inverted_index.technique | 186 |
| abstract_inverted_index.Therefore, | 178 |
| abstract_inverted_index.components | 145 |
| abstract_inverted_index.confidence | 189 |
| abstract_inverted_index.eliminated | 141 |
| abstract_inverted_index.prediction | 203 |
| abstract_inverted_index.predictive | 2, 191 |
| abstract_inverted_index.techniques | 5 |
| abstract_inverted_index.CNN-XGBoost | 173 |
| abstract_inverted_index.Thereafter, | 159 |
| abstract_inverted_index.establishes | 187 |
| abstract_inverted_index.explainable | 194 |
| abstract_inverted_index.maintenance | 4 |
| abstract_inverted_index.procedures. | 87 |
| abstract_inverted_index.autoencoder, | 139 |
| abstract_inverted_index.experimental | 86 |
| abstract_inverted_index.maintenance. | 192 |
| abstract_inverted_index.predictions. | 51 |
| abstract_inverted_index.subsequently | 45 |
| abstract_inverted_index.convolutional | 89 |
| abstract_inverted_index.differentiate | 64 |
| abstract_inverted_index.environmental | 29 |
| abstract_inverted_index.reconstructed | 147 |
| abstract_inverted_index.automatically, | 104 |
| abstract_inverted_index.interpretations | 39 |
| abstract_inverted_index.trustworthiness. | 211 |
| abstract_inverted_index.human-understandable | 205 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5068887717 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.87990396 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |