An explicit investigation of the roles that feature distributions play in rapid visual categorization Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.31234/osf.io/w5thg
Ensemble representations are often described as efficient tools when summarizing features of multiple similar objects as a group. However, it can sometimes be more useful not to compute a single summary description for all of the objects if they are substantially different, for example, when they belong to entirely different categories. It was proposed that the visual system can efficiently use the distributional information of ensembles to decide whether simultaneously displayed items belong to single or several different categories. Here we directly tested how the feature distribution of items in a visual array affects an ability to discriminate individual items (Experiment 1) and sets (Experiments 2-3) when participants were instructed explicitly to categorize individual objects based on the median of size distribution. We varied the width (narrow or fat) as well as the shape (smooth or two-peaked) of distributions in order to manipulate the ease of ensemble extraction from the items. We found that observers unintentionally relied on the grand mean as a natural categorical boundary and that their categorization accuracy increased as a function of the size differences among individual items and a function of their separation from the grand mean. For ensembles drawn from two-peaked size distributions, participants showed better categorization performance. They were more accurate at judging within-category ensemble properties in other dimensions (centroid and orientation) and less biased by superset statistics. This finding corroborates the idea that the two-peaked feature distributions support the “segmentability” of spatially intermixed sets of objects. Our results emphasize important roles of ensemble statistics (mean, range, distribution shape) in explicit visual categorization.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.31234/osf.io/w5thg
- OA Status
- gold
- Cited By
- 2
- References
- 59
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4240574319
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4240574319Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.31234/osf.io/w5thgDigital Object Identifier
- Title
-
An explicit investigation of the roles that feature distributions play in rapid visual categorizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-04-10Full publication date if available
- Authors
-
Hee Yeon Im, N. Tiurina, Igor UtochkinList of authors in order
- Landing page
-
https://doi.org/10.31234/osf.io/w5thgPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.31234/osf.io/w5thgDirect OA link when available
- Concepts
-
Categorization, Categorical variable, Centroid, Feature (linguistics), Artificial intelligence, Pattern recognition (psychology), Function (biology), Computer science, Orientation (vector space), Boundary (topology), Mathematics, Machine learning, Biology, Philosophy, Mathematical analysis, Evolutionary biology, Geometry, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
59Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4240574319 |
|---|---|
| doi | https://doi.org/10.31234/osf.io/w5thg |
| ids.doi | https://doi.org/10.31234/osf.io/w5thg |
| ids.openalex | https://openalex.org/W4240574319 |
| fwci | 0.69618533 |
| type | preprint |
| title | An explicit investigation of the roles that feature distributions play in rapid visual categorization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12417 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9688000082969666 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2608 |
| topics[0].subfield.display_name | Geometry and Topology |
| topics[0].display_name | Morphological variations and asymmetry |
| topics[1].id | https://openalex.org/T10689 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9341999888420105 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Remote-Sensing Image Classification |
| topics[2].id | https://openalex.org/T10427 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9192000031471252 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Visual perception and processing mechanisms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C94124525 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9110548496246338 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q912550 |
| concepts[0].display_name | Categorization |
| concepts[1].id | https://openalex.org/C5274069 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7316128015518188 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2285707 |
| concepts[1].display_name | Categorical variable |
| concepts[2].id | https://openalex.org/C146599234 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6838449835777283 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q511093 |
| concepts[2].display_name | Centroid |
| concepts[3].id | https://openalex.org/C2776401178 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5721287131309509 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[3].display_name | Feature (linguistics) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5247300267219543 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5242528915405273 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C14036430 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48448798060417175 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[6].display_name | Function (biology) |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.47886988520622253 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C16345878 |
| concepts[8].level | 2 |
| concepts[8].score | 0.47049522399902344 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q107472979 |
| concepts[8].display_name | Orientation (vector space) |
| concepts[9].id | https://openalex.org/C62354387 |
| concepts[9].level | 2 |
| concepts[9].score | 0.45452985167503357 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q875399 |
| concepts[9].display_name | Boundary (topology) |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.38209596276283264 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.21173050999641418 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C138885662 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[13].display_name | Philosophy |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| concepts[15].id | https://openalex.org/C78458016 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[15].display_name | Evolutionary biology |
| concepts[16].id | https://openalex.org/C2524010 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[16].display_name | Geometry |
| concepts[17].id | https://openalex.org/C41895202 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[17].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/categorization |
| keywords[0].score | 0.9110548496246338 |
| keywords[0].display_name | Categorization |
| keywords[1].id | https://openalex.org/keywords/categorical-variable |
| keywords[1].score | 0.7316128015518188 |
| keywords[1].display_name | Categorical variable |
| keywords[2].id | https://openalex.org/keywords/centroid |
| keywords[2].score | 0.6838449835777283 |
| keywords[2].display_name | Centroid |
| keywords[3].id | https://openalex.org/keywords/feature |
| keywords[3].score | 0.5721287131309509 |
| keywords[3].display_name | Feature (linguistics) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5247300267219543 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5242528915405273 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/function |
| keywords[6].score | 0.48448798060417175 |
| keywords[6].display_name | Function (biology) |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.47886988520622253 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/orientation |
| keywords[8].score | 0.47049522399902344 |
| keywords[8].display_name | Orientation (vector space) |
| keywords[9].id | https://openalex.org/keywords/boundary |
| keywords[9].score | 0.45452985167503357 |
| keywords[9].display_name | Boundary (topology) |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.38209596276283264 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.21173050999641418 |
| keywords[11].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.31234/osf.io/w5thg |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.31234/osf.io/w5thg |
| locations[1].id | pmh:oai:share.osf.io:19f634b4-ae22-4de5-b902-5fad6e8b9132 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400047 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Arabixiv (OSF Preprints) |
| locations[1].source.host_organization | https://openalex.org/I2799848540 |
| locations[1].source.host_organization_name | Center for Open Science |
| locations[1].source.host_organization_lineage | https://openalex.org/I2799848540 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Preprint |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://osf.io/w5thg |
| locations[2].id | pmh:oai:share.osf.io:460BA-126-8CC |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400047 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Arabixiv (OSF Preprints) |
| locations[2].source.host_organization | https://openalex.org/I2799848540 |
| locations[2].source.host_organization_name | Center for Open Science |
| locations[2].source.host_organization_lineage | https://openalex.org/I2799848540 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | preprint |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://doi.org/10.31234/OSF.IO/W5THG |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5010374456 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9379-1347 |
| authorships[0].author.display_name | Hee Yeon Im |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I111088046, https://openalex.org/I1288882113, https://openalex.org/I136199984 |
| authorships[0].affiliations[0].raw_affiliation_string | . Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, USA |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I1288882113, https://openalex.org/I136199984 |
| authorships[0].affiliations[1].raw_affiliation_string | . Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Har-vard Medical School, Boston, USA |
| authorships[0].institutions[0].id | https://openalex.org/I1288882113 |
| authorships[0].institutions[0].ror | https://ror.org/00dvg7y05 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I1288882113 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Boston Children's Hospital |
| authorships[0].institutions[1].id | https://openalex.org/I111088046 |
| authorships[0].institutions[1].ror | https://ror.org/05qwgg493 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I111088046 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Boston University |
| authorships[0].institutions[2].id | https://openalex.org/I136199984 |
| authorships[0].institutions[2].ror | https://ror.org/03vek6s52 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I136199984 |
| authorships[0].institutions[2].country_code | US |
| authorships[0].institutions[2].display_name | Harvard University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hee Yeon Im |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | . Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, USA, . Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Har-vard Medical School, Boston, USA |
| authorships[1].author.id | https://openalex.org/A5011807699 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1631-4042 |
| authorships[1].author.display_name | N. Tiurina |
| authorships[1].countries | RU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I118501908 |
| authorships[1].affiliations[0].raw_affiliation_string | . National Research University Higher School of Economics, Russia |
| authorships[1].institutions[0].id | https://openalex.org/I118501908 |
| authorships[1].institutions[0].ror | https://ror.org/055f7t516 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I118501908 |
| authorships[1].institutions[0].country_code | RU |
| authorships[1].institutions[0].display_name | National Research University Higher School of Economics |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Natalia Tiurina |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | . National Research University Higher School of Economics, Russia |
| authorships[2].author.id | https://openalex.org/A5042820708 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8433-446X |
| authorships[2].author.display_name | Igor Utochkin |
| authorships[2].countries | RU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I118501908 |
| authorships[2].affiliations[0].raw_affiliation_string | . National Research University Higher School of Economics, Russia |
| authorships[2].institutions[0].id | https://openalex.org/I118501908 |
| authorships[2].institutions[0].ror | https://ror.org/055f7t516 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I118501908 |
| authorships[2].institutions[0].country_code | RU |
| authorships[2].institutions[0].display_name | National Research University Higher School of Economics |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Igor Utochkin |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | . National Research University Higher School of Economics, Russia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.31234/osf.io/w5thg |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An explicit investigation of the roles that feature distributions play in rapid visual categorization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12417 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9688000082969666 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2608 |
| primary_topic.subfield.display_name | Geometry and Topology |
| primary_topic.display_name | Morphological variations and asymmetry |
| related_works | https://openalex.org/W2165912799, https://openalex.org/W2735662278, https://openalex.org/W2382615723, https://openalex.org/W4311804456, https://openalex.org/W2381926679, https://openalex.org/W1987484445, https://openalex.org/W2623658258, https://openalex.org/W2143413548, https://openalex.org/W1969219540, https://openalex.org/W97068511 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.31234/osf.io/w5thg |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.31234/osf.io/w5thg |
| primary_location.id | doi:10.31234/osf.io/w5thg |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.31234/osf.io/w5thg |
| publication_date | 2020-04-10 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2157456011, https://openalex.org/W2554243471, https://openalex.org/W2012718235, https://openalex.org/W2036096079, https://openalex.org/W2098353881, https://openalex.org/W2144764737, https://openalex.org/W64652264, https://openalex.org/W2006902234, https://openalex.org/W2093353037, https://openalex.org/W4249328188, https://openalex.org/W2042876022, https://openalex.org/W1969834163, https://openalex.org/W2954324377, https://openalex.org/W2015634454, https://openalex.org/W2463637247, https://openalex.org/W2904641572, https://openalex.org/W1747565446, https://openalex.org/W2756385157, https://openalex.org/W1990964553, https://openalex.org/W2153581683, https://openalex.org/W4233242416, https://openalex.org/W4242988250, https://openalex.org/W1894519195, https://openalex.org/W1493275625, https://openalex.org/W2108936682, https://openalex.org/W2121822954, https://openalex.org/W2032533296, https://openalex.org/W2120680937, https://openalex.org/W2137607493, https://openalex.org/W1983232200, https://openalex.org/W2072067353, https://openalex.org/W2039528732, https://openalex.org/W2531795832, https://openalex.org/W2015466413, https://openalex.org/W2047088797, https://openalex.org/W2397212653, https://openalex.org/W2549731245, https://openalex.org/W2121487911, https://openalex.org/W2063662525, https://openalex.org/W2003565133, https://openalex.org/W2166667242, https://openalex.org/W2048627533, https://openalex.org/W2031731579, https://openalex.org/W1974533064, https://openalex.org/W2169576334, https://openalex.org/W2138614602, https://openalex.org/W2093442778, https://openalex.org/W2152344906, https://openalex.org/W2964391122, https://openalex.org/W2035975808, https://openalex.org/W1969939582, https://openalex.org/W1595378079, https://openalex.org/W2000255081, https://openalex.org/W2913606428, https://openalex.org/W1938642425, https://openalex.org/W2623610769, https://openalex.org/W1896238907, https://openalex.org/W2162665012, https://openalex.org/W2810783862 |
| referenced_works_count | 59 |
| abstract_inverted_index.a | 16, 28, 90, 162, 173, 183 |
| abstract_inverted_index.1) | 101 |
| abstract_inverted_index.It | 51 |
| abstract_inverted_index.We | 122, 151 |
| abstract_inverted_index.an | 94 |
| abstract_inverted_index.as | 5, 15, 129, 131, 161, 172 |
| abstract_inverted_index.at | 208 |
| abstract_inverted_index.be | 22 |
| abstract_inverted_index.by | 222 |
| abstract_inverted_index.if | 37 |
| abstract_inverted_index.in | 89, 139, 213, 256 |
| abstract_inverted_index.it | 19 |
| abstract_inverted_index.of | 11, 34, 64, 87, 119, 137, 145, 175, 185, 238, 242, 249 |
| abstract_inverted_index.on | 116, 157 |
| abstract_inverted_index.or | 75, 127, 135 |
| abstract_inverted_index.to | 26, 47, 66, 73, 96, 111, 141 |
| abstract_inverted_index.we | 80 |
| abstract_inverted_index.For | 192 |
| abstract_inverted_index.Our | 244 |
| abstract_inverted_index.all | 33 |
| abstract_inverted_index.and | 102, 166, 182, 217, 219 |
| abstract_inverted_index.are | 2, 39 |
| abstract_inverted_index.can | 20, 58 |
| abstract_inverted_index.for | 32, 42 |
| abstract_inverted_index.how | 83 |
| abstract_inverted_index.not | 25 |
| abstract_inverted_index.the | 35, 55, 61, 84, 117, 124, 132, 143, 149, 158, 176, 189, 228, 231, 236 |
| abstract_inverted_index.use | 60 |
| abstract_inverted_index.was | 52 |
| abstract_inverted_index.2-3) | 105 |
| abstract_inverted_index.Here | 79 |
| abstract_inverted_index.They | 204 |
| abstract_inverted_index.This | 225 |
| abstract_inverted_index.ease | 144 |
| abstract_inverted_index.fat) | 128 |
| abstract_inverted_index.from | 148, 188, 195 |
| abstract_inverted_index.idea | 229 |
| abstract_inverted_index.less | 220 |
| abstract_inverted_index.mean | 160 |
| abstract_inverted_index.more | 23, 206 |
| abstract_inverted_index.sets | 103, 241 |
| abstract_inverted_index.size | 120, 177, 197 |
| abstract_inverted_index.that | 54, 153, 167, 230 |
| abstract_inverted_index.they | 38, 45 |
| abstract_inverted_index.well | 130 |
| abstract_inverted_index.were | 108, 205 |
| abstract_inverted_index.when | 8, 44, 106 |
| abstract_inverted_index.among | 179 |
| abstract_inverted_index.array | 92 |
| abstract_inverted_index.based | 115 |
| abstract_inverted_index.drawn | 194 |
| abstract_inverted_index.found | 152 |
| abstract_inverted_index.grand | 159, 190 |
| abstract_inverted_index.items | 71, 88, 99, 181 |
| abstract_inverted_index.mean. | 191 |
| abstract_inverted_index.often | 3 |
| abstract_inverted_index.order | 140 |
| abstract_inverted_index.other | 214 |
| abstract_inverted_index.roles | 248 |
| abstract_inverted_index.shape | 133 |
| abstract_inverted_index.their | 168, 186 |
| abstract_inverted_index.tools | 7 |
| abstract_inverted_index.width | 125 |
| abstract_inverted_index.(mean, | 252 |
| abstract_inverted_index.belong | 46, 72 |
| abstract_inverted_index.better | 201 |
| abstract_inverted_index.biased | 221 |
| abstract_inverted_index.decide | 67 |
| abstract_inverted_index.group. | 17 |
| abstract_inverted_index.items. | 150 |
| abstract_inverted_index.median | 118 |
| abstract_inverted_index.range, | 253 |
| abstract_inverted_index.relied | 156 |
| abstract_inverted_index.shape) | 255 |
| abstract_inverted_index.showed | 200 |
| abstract_inverted_index.single | 29, 74 |
| abstract_inverted_index.system | 57 |
| abstract_inverted_index.tested | 82 |
| abstract_inverted_index.useful | 24 |
| abstract_inverted_index.varied | 123 |
| abstract_inverted_index.visual | 56, 91, 258 |
| abstract_inverted_index.(narrow | 126 |
| abstract_inverted_index.(smooth | 134 |
| abstract_inverted_index.ability | 95 |
| abstract_inverted_index.affects | 93 |
| abstract_inverted_index.compute | 27 |
| abstract_inverted_index.feature | 85, 233 |
| abstract_inverted_index.finding | 226 |
| abstract_inverted_index.judging | 209 |
| abstract_inverted_index.natural | 163 |
| abstract_inverted_index.objects | 14, 36, 114 |
| abstract_inverted_index.results | 245 |
| abstract_inverted_index.several | 76 |
| abstract_inverted_index.similar | 13 |
| abstract_inverted_index.summary | 30 |
| abstract_inverted_index.support | 235 |
| abstract_inverted_index.whether | 68 |
| abstract_inverted_index.Ensemble | 0 |
| abstract_inverted_index.However, | 18 |
| abstract_inverted_index.accuracy | 170 |
| abstract_inverted_index.accurate | 207 |
| abstract_inverted_index.boundary | 165 |
| abstract_inverted_index.directly | 81 |
| abstract_inverted_index.ensemble | 146, 211, 250 |
| abstract_inverted_index.entirely | 48 |
| abstract_inverted_index.example, | 43 |
| abstract_inverted_index.explicit | 257 |
| abstract_inverted_index.features | 10 |
| abstract_inverted_index.function | 174, 184 |
| abstract_inverted_index.multiple | 12 |
| abstract_inverted_index.objects. | 243 |
| abstract_inverted_index.proposed | 53 |
| abstract_inverted_index.superset | 223 |
| abstract_inverted_index.(centroid | 216 |
| abstract_inverted_index.described | 4 |
| abstract_inverted_index.different | 49, 77 |
| abstract_inverted_index.displayed | 70 |
| abstract_inverted_index.efficient | 6 |
| abstract_inverted_index.emphasize | 246 |
| abstract_inverted_index.ensembles | 65, 193 |
| abstract_inverted_index.important | 247 |
| abstract_inverted_index.increased | 171 |
| abstract_inverted_index.observers | 154 |
| abstract_inverted_index.sometimes | 21 |
| abstract_inverted_index.spatially | 239 |
| abstract_inverted_index.categorize | 112 |
| abstract_inverted_index.different, | 41 |
| abstract_inverted_index.dimensions | 215 |
| abstract_inverted_index.explicitly | 110 |
| abstract_inverted_index.extraction | 147 |
| abstract_inverted_index.individual | 98, 113, 180 |
| abstract_inverted_index.instructed | 109 |
| abstract_inverted_index.intermixed | 240 |
| abstract_inverted_index.manipulate | 142 |
| abstract_inverted_index.properties | 212 |
| abstract_inverted_index.separation | 187 |
| abstract_inverted_index.statistics | 251 |
| abstract_inverted_index.two-peaked | 196, 232 |
| abstract_inverted_index.(Experiment | 100 |
| abstract_inverted_index.categorical | 164 |
| abstract_inverted_index.categories. | 50, 78 |
| abstract_inverted_index.description | 31 |
| abstract_inverted_index.differences | 178 |
| abstract_inverted_index.efficiently | 59 |
| abstract_inverted_index.information | 63 |
| abstract_inverted_index.statistics. | 224 |
| abstract_inverted_index.summarizing | 9 |
| abstract_inverted_index.two-peaked) | 136 |
| abstract_inverted_index.(Experiments | 104 |
| abstract_inverted_index.corroborates | 227 |
| abstract_inverted_index.discriminate | 97 |
| abstract_inverted_index.distribution | 86, 254 |
| abstract_inverted_index.orientation) | 218 |
| abstract_inverted_index.participants | 107, 199 |
| abstract_inverted_index.performance. | 203 |
| abstract_inverted_index.distribution. | 121 |
| abstract_inverted_index.distributions | 138, 234 |
| abstract_inverted_index.substantially | 40 |
| abstract_inverted_index.categorization | 169, 202 |
| abstract_inverted_index.distributional | 62 |
| abstract_inverted_index.distributions, | 198 |
| abstract_inverted_index.simultaneously | 69 |
| abstract_inverted_index.categorization. | 259 |
| abstract_inverted_index.representations | 1 |
| abstract_inverted_index.unintentionally | 155 |
| abstract_inverted_index.within-category | 210 |
| abstract_inverted_index.“segmentability” | 237 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5042820708 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I118501908 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7400000095367432 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.74753452 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |