An extended TOPSIS technique based on correlation coefficient for interval-valued q-rung orthopair fuzzy hypersoft set in multi-attribute group decision-making Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1007/s40747-025-01838-4
The accurate determination of results in decision analysis is usually predicated on the association between two factors. Although generating data for analytical purposes presents an apparent hurdle, the data obtained may present hurdles in its interpretation. Correlation coefficients can be used to analyze the interaction between two factors and their variations. These coefficients deliver an objective description of the association between parameters, assisting in predicting and assessing alterations between particular parameters. The purpose of this research is to explore the applicability of correlation coefficients (CC) and weighted correlation coefficients (WCC) in interval-valued q-rung orthopair fuzzy hypersoft sets (IVq-ROFHSS) structures with their essential characteristics. These measures are developed to address the inevitable confusion, inconsistency, and volatility in real-life decision-making challenges. The implementation of these components attempts to boost the productivity of the technique for order preference by similarity to the ideal solution (TOPSIS) method. The computational models with correlation constraints are presented to determine the reliability and regularity of the proposed method. This research proves that the proposed technique is effective for multi-attribute group decision-making (MAGDM), particularly for analyzing and prioritizing convoluted data sets. Moreover, a numerical illustration is presented to clarify how the advocated decision-making methodology can be implemented in reality in evaluating bio-medical disposal techniques for hospitals. This study determines incineration as the most beneficial method for BMW disposal, demonstrating its more efficient use of alternative disposal techniques. A comparative analysis further substantiates the feasibility and effectiveness of the proposed approach over other decision-making techniques.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s40747-025-01838-4
- https://link.springer.com/content/pdf/10.1007/s40747-025-01838-4.pdf
- OA Status
- gold
- Cited By
- 3
- References
- 64
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409696148
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409696148Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s40747-025-01838-4Digital Object Identifier
- Title
-
An extended TOPSIS technique based on correlation coefficient for interval-valued q-rung orthopair fuzzy hypersoft set in multi-attribute group decision-makingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-23Full publication date if available
- Authors
-
Rana Muhammad Zulqarnain, Imran Siddique, Sameh Askar, Ahmad M. Alshamrani, Dragan Pamučar, Vladimir ŠimićList of authors in order
- Landing page
-
https://doi.org/10.1007/s40747-025-01838-4Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s40747-025-01838-4.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s40747-025-01838-4.pdfDirect OA link when available
- Concepts
-
Computational intelligence, Mathematics, Group decision-making, Group (periodic table), Set (abstract data type), TOPSIS, Correlation, Correlation coefficient, Fuzzy logic, Interval (graph theory), Fuzzy set, Statistics, Computer science, Artificial intelligence, Operations research, Psychology, Social psychology, Physics, Combinatorics, Programming language, Quantum mechanics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
64Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409696148 |
|---|---|
| doi | https://doi.org/10.1007/s40747-025-01838-4 |
| ids.doi | https://doi.org/10.1007/s40747-025-01838-4 |
| ids.openalex | https://openalex.org/W4409696148 |
| fwci | 16.52046332 |
| type | article |
| title | An extended TOPSIS technique based on correlation coefficient for interval-valued q-rung orthopair fuzzy hypersoft set in multi-attribute group decision-making |
| biblio.issue | 6 |
| biblio.volume | 11 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10050 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Multi-Criteria Decision Making |
| topics[1].id | https://openalex.org/T11063 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9596999883651733 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Rough Sets and Fuzzy Logic |
| topics[2].id | https://openalex.org/T12135 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9557999968528748 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Fuzzy Systems and Optimization |
| is_xpac | False |
| apc_list.value | 1320 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1619 |
| apc_paid.value | 1320 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1619 |
| concepts[0].id | https://openalex.org/C139502532 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7291767597198486 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1122090 |
| concepts[0].display_name | Computational intelligence |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5902536511421204 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C20701700 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5848244428634644 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q388791 |
| concepts[2].display_name | Group decision-making |
| concepts[3].id | https://openalex.org/C2781311116 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5763275027275085 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q83306 |
| concepts[3].display_name | Group (periodic table) |
| concepts[4].id | https://openalex.org/C177264268 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5678032040596008 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[4].display_name | Set (abstract data type) |
| concepts[5].id | https://openalex.org/C51566761 |
| concepts[5].level | 2 |
| concepts[5].score | 0.524939775466919 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1235853 |
| concepts[5].display_name | TOPSIS |
| concepts[6].id | https://openalex.org/C117220453 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5220303535461426 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5172842 |
| concepts[6].display_name | Correlation |
| concepts[7].id | https://openalex.org/C2780092901 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5164185166358948 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3433612 |
| concepts[7].display_name | Correlation coefficient |
| concepts[8].id | https://openalex.org/C58166 |
| concepts[8].level | 2 |
| concepts[8].score | 0.49664241075515747 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q224821 |
| concepts[8].display_name | Fuzzy logic |
| concepts[9].id | https://openalex.org/C2778067643 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4424101710319519 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q166507 |
| concepts[9].display_name | Interval (graph theory) |
| concepts[10].id | https://openalex.org/C42011625 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4157772362232208 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1055058 |
| concepts[10].display_name | Fuzzy set |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.36882585287094116 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.3660489320755005 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.2720898985862732 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C42475967 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2248930037021637 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q194292 |
| concepts[14].display_name | Operations research |
| concepts[15].id | https://openalex.org/C15744967 |
| concepts[15].level | 0 |
| concepts[15].score | 0.1479833424091339 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[15].display_name | Psychology |
| concepts[16].id | https://openalex.org/C77805123 |
| concepts[16].level | 1 |
| concepts[16].score | 0.08967792987823486 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[16].display_name | Social psychology |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.08776715397834778 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C114614502 |
| concepts[18].level | 1 |
| concepts[18].score | 0.06707653403282166 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[18].display_name | Combinatorics |
| concepts[19].id | https://openalex.org/C199360897 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[19].display_name | Programming language |
| concepts[20].id | https://openalex.org/C62520636 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[20].display_name | Quantum mechanics |
| concepts[21].id | https://openalex.org/C2524010 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[21].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/computational-intelligence |
| keywords[0].score | 0.7291767597198486 |
| keywords[0].display_name | Computational intelligence |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.5902536511421204 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/group-decision-making |
| keywords[2].score | 0.5848244428634644 |
| keywords[2].display_name | Group decision-making |
| keywords[3].id | https://openalex.org/keywords/group |
| keywords[3].score | 0.5763275027275085 |
| keywords[3].display_name | Group (periodic table) |
| keywords[4].id | https://openalex.org/keywords/set |
| keywords[4].score | 0.5678032040596008 |
| keywords[4].display_name | Set (abstract data type) |
| keywords[5].id | https://openalex.org/keywords/topsis |
| keywords[5].score | 0.524939775466919 |
| keywords[5].display_name | TOPSIS |
| keywords[6].id | https://openalex.org/keywords/correlation |
| keywords[6].score | 0.5220303535461426 |
| keywords[6].display_name | Correlation |
| keywords[7].id | https://openalex.org/keywords/correlation-coefficient |
| keywords[7].score | 0.5164185166358948 |
| keywords[7].display_name | Correlation coefficient |
| keywords[8].id | https://openalex.org/keywords/fuzzy-logic |
| keywords[8].score | 0.49664241075515747 |
| keywords[8].display_name | Fuzzy logic |
| keywords[9].id | https://openalex.org/keywords/interval |
| keywords[9].score | 0.4424101710319519 |
| keywords[9].display_name | Interval (graph theory) |
| keywords[10].id | https://openalex.org/keywords/fuzzy-set |
| keywords[10].score | 0.4157772362232208 |
| keywords[10].display_name | Fuzzy set |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.36882585287094116 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/computer-science |
| keywords[12].score | 0.3660489320755005 |
| keywords[12].display_name | Computer science |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.2720898985862732 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/operations-research |
| keywords[14].score | 0.2248930037021637 |
| keywords[14].display_name | Operations research |
| keywords[15].id | https://openalex.org/keywords/psychology |
| keywords[15].score | 0.1479833424091339 |
| keywords[15].display_name | Psychology |
| keywords[16].id | https://openalex.org/keywords/social-psychology |
| keywords[16].score | 0.08967792987823486 |
| keywords[16].display_name | Social psychology |
| keywords[17].id | https://openalex.org/keywords/physics |
| keywords[17].score | 0.08776715397834778 |
| keywords[17].display_name | Physics |
| keywords[18].id | https://openalex.org/keywords/combinatorics |
| keywords[18].score | 0.06707653403282166 |
| keywords[18].display_name | Combinatorics |
| language | en |
| locations[0].id | doi:10.1007/s40747-025-01838-4 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S3035462843 |
| locations[0].source.issn | 2198-6053, 2199-4536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2198-6053 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Complex & Intelligent Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s40747-025-01838-4.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Complex & Intelligent Systems |
| locations[0].landing_page_url | https://doi.org/10.1007/s40747-025-01838-4 |
| locations[1].id | pmh:oai:doaj.org/article:c6eeeabc7b714bdf921c90346f66c869 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Complex & Intelligent Systems, Vol 11, Iss 6, Pp 1-34 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/c6eeeabc7b714bdf921c90346f66c869 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5080364045 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2656-8679 |
| authorships[0].author.display_name | Rana Muhammad Zulqarnain |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rana Muhammad Zulqarnain |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5022884973 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5060-7906 |
| authorships[1].author.display_name | Imran Siddique |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Imran Siddique |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5088545047 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1167-2430 |
| authorships[2].author.display_name | Sameh Askar |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sameh Askar |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5018298333 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7103-8872 |
| authorships[3].author.display_name | Ahmad M. Alshamrani |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ahmad M. Alshamrani |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5018974025 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8522-1942 |
| authorships[4].author.display_name | Dragan Pamučar |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Dragan Pamucar |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5011658703 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5709-3744 |
| authorships[5].author.display_name | Vladimir Šimić |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Vladimir Simic |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s40747-025-01838-4.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An extended TOPSIS technique based on correlation coefficient for interval-valued q-rung orthopair fuzzy hypersoft set in multi-attribute group decision-making |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10050 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Multi-Criteria Decision Making |
| related_works | https://openalex.org/W2041949587, https://openalex.org/W2958553423, https://openalex.org/W2358217305, https://openalex.org/W2359186709, https://openalex.org/W4282827651, https://openalex.org/W3015638941, https://openalex.org/W2047025039, https://openalex.org/W1928481587, https://openalex.org/W2613305061, https://openalex.org/W4237248107 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1007/s40747-025-01838-4 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S3035462843 |
| best_oa_location.source.issn | 2198-6053, 2199-4536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2198-6053 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Complex & Intelligent Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s40747-025-01838-4.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Complex & Intelligent Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s40747-025-01838-4 |
| primary_location.id | doi:10.1007/s40747-025-01838-4 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S3035462843 |
| primary_location.source.issn | 2198-6053, 2199-4536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2198-6053 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Complex & Intelligent Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s40747-025-01838-4.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Complex & Intelligent Systems |
| primary_location.landing_page_url | https://doi.org/10.1007/s40747-025-01838-4 |
| publication_date | 2025-04-23 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2900179692, https://openalex.org/W2068402605, https://openalex.org/W1980564456, https://openalex.org/W2013932252, https://openalex.org/W1765570948, https://openalex.org/W2514754342, https://openalex.org/W1978352585, https://openalex.org/W2041157997, https://openalex.org/W2999200782, https://openalex.org/W3213727720, https://openalex.org/W4296311540, https://openalex.org/W4285394148, https://openalex.org/W4404086869, https://openalex.org/W2053589271, https://openalex.org/W2791333626, https://openalex.org/W2187136477, https://openalex.org/W2113331171, https://openalex.org/W2167563796, https://openalex.org/W2012184461, https://openalex.org/W4406560419, https://openalex.org/W2921345398, https://openalex.org/W2513660613, https://openalex.org/W2014751281, https://openalex.org/W2074045205, https://openalex.org/W4405923454, https://openalex.org/W3042236697, https://openalex.org/W3106327475, https://openalex.org/W2984597282, https://openalex.org/W4308529536, https://openalex.org/W3164676804, https://openalex.org/W4211007335, https://openalex.org/W4392875323, https://openalex.org/W4205558848, https://openalex.org/W3090030499, https://openalex.org/W2991112246, https://openalex.org/W4327739936, https://openalex.org/W4318027374, https://openalex.org/W4389218995, https://openalex.org/W3201945250, https://openalex.org/W2506768821, https://openalex.org/W2042102899, https://openalex.org/W4210609870, https://openalex.org/W4310077686, https://openalex.org/W2063202994, https://openalex.org/W2944080986, https://openalex.org/W3082622234, https://openalex.org/W2907458137, https://openalex.org/W2755143840, https://openalex.org/W3011105088, https://openalex.org/W3127056016, https://openalex.org/W4389462132, https://openalex.org/W4405097447, https://openalex.org/W3118350556, https://openalex.org/W4322741247, https://openalex.org/W4393375603, https://openalex.org/W4301373334, https://openalex.org/W4210838854, https://openalex.org/W4293723031, https://openalex.org/W4379409146, https://openalex.org/W2906700374, https://openalex.org/W4401844660, https://openalex.org/W3193762211, https://openalex.org/W2886908423, https://openalex.org/W3047452133 |
| referenced_works_count | 64 |
| abstract_inverted_index.A | 230 |
| abstract_inverted_index.a | 185 |
| abstract_inverted_index.an | 25, 55 |
| abstract_inverted_index.as | 213 |
| abstract_inverted_index.be | 40, 198 |
| abstract_inverted_index.by | 136 |
| abstract_inverted_index.in | 6, 34, 64, 91, 116, 200, 202 |
| abstract_inverted_index.is | 9, 77, 169, 188 |
| abstract_inverted_index.of | 4, 58, 74, 82, 122, 130, 158, 226, 239 |
| abstract_inverted_index.on | 12 |
| abstract_inverted_index.to | 42, 78, 108, 126, 138, 152, 190 |
| abstract_inverted_index.BMW | 219 |
| abstract_inverted_index.The | 1, 72, 120, 144 |
| abstract_inverted_index.and | 49, 66, 86, 114, 156, 179, 237 |
| abstract_inverted_index.are | 106, 150 |
| abstract_inverted_index.can | 39, 197 |
| abstract_inverted_index.for | 21, 133, 171, 177, 207, 218 |
| abstract_inverted_index.how | 192 |
| abstract_inverted_index.its | 35, 222 |
| abstract_inverted_index.may | 31 |
| abstract_inverted_index.the | 13, 28, 44, 59, 80, 110, 128, 131, 139, 154, 159, 166, 193, 214, 235, 240 |
| abstract_inverted_index.two | 16, 47 |
| abstract_inverted_index.use | 225 |
| abstract_inverted_index.(CC) | 85 |
| abstract_inverted_index.This | 162, 209 |
| abstract_inverted_index.data | 20, 29, 182 |
| abstract_inverted_index.more | 223 |
| abstract_inverted_index.most | 215 |
| abstract_inverted_index.over | 243 |
| abstract_inverted_index.sets | 97 |
| abstract_inverted_index.that | 165 |
| abstract_inverted_index.this | 75 |
| abstract_inverted_index.used | 41 |
| abstract_inverted_index.with | 100, 147 |
| abstract_inverted_index.(WCC) | 90 |
| abstract_inverted_index.These | 52, 104 |
| abstract_inverted_index.boost | 127 |
| abstract_inverted_index.fuzzy | 95 |
| abstract_inverted_index.group | 173 |
| abstract_inverted_index.ideal | 140 |
| abstract_inverted_index.order | 134 |
| abstract_inverted_index.other | 244 |
| abstract_inverted_index.sets. | 183 |
| abstract_inverted_index.study | 210 |
| abstract_inverted_index.their | 50, 101 |
| abstract_inverted_index.these | 123 |
| abstract_inverted_index.method | 217 |
| abstract_inverted_index.models | 146 |
| abstract_inverted_index.proves | 164 |
| abstract_inverted_index.q-rung | 93 |
| abstract_inverted_index.address | 109 |
| abstract_inverted_index.analyze | 43 |
| abstract_inverted_index.between | 15, 46, 61, 69 |
| abstract_inverted_index.clarify | 191 |
| abstract_inverted_index.deliver | 54 |
| abstract_inverted_index.explore | 79 |
| abstract_inverted_index.factors | 48 |
| abstract_inverted_index.further | 233 |
| abstract_inverted_index.hurdle, | 27 |
| abstract_inverted_index.hurdles | 33 |
| abstract_inverted_index.method. | 143, 161 |
| abstract_inverted_index.present | 32 |
| abstract_inverted_index.purpose | 73 |
| abstract_inverted_index.reality | 201 |
| abstract_inverted_index.results | 5 |
| abstract_inverted_index.usually | 10 |
| abstract_inverted_index.(MAGDM), | 175 |
| abstract_inverted_index.(TOPSIS) | 142 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Although | 18 |
| abstract_inverted_index.accurate | 2 |
| abstract_inverted_index.analysis | 8, 232 |
| abstract_inverted_index.apparent | 26 |
| abstract_inverted_index.approach | 242 |
| abstract_inverted_index.attempts | 125 |
| abstract_inverted_index.decision | 7 |
| abstract_inverted_index.disposal | 205, 228 |
| abstract_inverted_index.factors. | 17 |
| abstract_inverted_index.measures | 105 |
| abstract_inverted_index.obtained | 30 |
| abstract_inverted_index.presents | 24 |
| abstract_inverted_index.proposed | 160, 167, 241 |
| abstract_inverted_index.purposes | 23 |
| abstract_inverted_index.research | 76, 163 |
| abstract_inverted_index.solution | 141 |
| abstract_inverted_index.weighted | 87 |
| abstract_inverted_index.Moreover, | 184 |
| abstract_inverted_index.advocated | 194 |
| abstract_inverted_index.analyzing | 178 |
| abstract_inverted_index.assessing | 67 |
| abstract_inverted_index.assisting | 63 |
| abstract_inverted_index.determine | 153 |
| abstract_inverted_index.developed | 107 |
| abstract_inverted_index.disposal, | 220 |
| abstract_inverted_index.effective | 170 |
| abstract_inverted_index.efficient | 224 |
| abstract_inverted_index.essential | 102 |
| abstract_inverted_index.hypersoft | 96 |
| abstract_inverted_index.numerical | 186 |
| abstract_inverted_index.objective | 56 |
| abstract_inverted_index.orthopair | 94 |
| abstract_inverted_index.presented | 151, 189 |
| abstract_inverted_index.real-life | 117 |
| abstract_inverted_index.technique | 132, 168 |
| abstract_inverted_index.analytical | 22 |
| abstract_inverted_index.beneficial | 216 |
| abstract_inverted_index.components | 124 |
| abstract_inverted_index.confusion, | 112 |
| abstract_inverted_index.convoluted | 181 |
| abstract_inverted_index.determines | 211 |
| abstract_inverted_index.evaluating | 203 |
| abstract_inverted_index.generating | 19 |
| abstract_inverted_index.hospitals. | 208 |
| abstract_inverted_index.inevitable | 111 |
| abstract_inverted_index.particular | 70 |
| abstract_inverted_index.predicated | 11 |
| abstract_inverted_index.predicting | 65 |
| abstract_inverted_index.preference | 135 |
| abstract_inverted_index.regularity | 157 |
| abstract_inverted_index.similarity | 137 |
| abstract_inverted_index.structures | 99 |
| abstract_inverted_index.techniques | 206 |
| abstract_inverted_index.volatility | 115 |
| abstract_inverted_index.Correlation | 37 |
| abstract_inverted_index.alterations | 68 |
| abstract_inverted_index.alternative | 227 |
| abstract_inverted_index.association | 14, 60 |
| abstract_inverted_index.bio-medical | 204 |
| abstract_inverted_index.challenges. | 119 |
| abstract_inverted_index.comparative | 231 |
| abstract_inverted_index.constraints | 149 |
| abstract_inverted_index.correlation | 83, 88, 148 |
| abstract_inverted_index.description | 57 |
| abstract_inverted_index.feasibility | 236 |
| abstract_inverted_index.implemented | 199 |
| abstract_inverted_index.interaction | 45 |
| abstract_inverted_index.methodology | 196 |
| abstract_inverted_index.parameters, | 62 |
| abstract_inverted_index.parameters. | 71 |
| abstract_inverted_index.reliability | 155 |
| abstract_inverted_index.techniques. | 229, 246 |
| abstract_inverted_index.variations. | 51 |
| abstract_inverted_index.(IVq-ROFHSS) | 98 |
| abstract_inverted_index.coefficients | 38, 53, 84, 89 |
| abstract_inverted_index.illustration | 187 |
| abstract_inverted_index.incineration | 212 |
| abstract_inverted_index.particularly | 176 |
| abstract_inverted_index.prioritizing | 180 |
| abstract_inverted_index.productivity | 129 |
| abstract_inverted_index.applicability | 81 |
| abstract_inverted_index.computational | 145 |
| abstract_inverted_index.demonstrating | 221 |
| abstract_inverted_index.determination | 3 |
| abstract_inverted_index.effectiveness | 238 |
| abstract_inverted_index.substantiates | 234 |
| abstract_inverted_index.implementation | 121 |
| abstract_inverted_index.inconsistency, | 113 |
| abstract_inverted_index.decision-making | 118, 174, 195, 245 |
| abstract_inverted_index.interpretation. | 36 |
| abstract_inverted_index.interval-valued | 92 |
| abstract_inverted_index.multi-attribute | 172 |
| abstract_inverted_index.characteristics. | 103 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.97567155 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |