An external validation of the QCOVID3 risk prediction algorithm for risk of hospitalisation and death from COVID-19: An observational, prospective cohort study of 1.66m vaccinated adults in Wales, UK Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pone.0285979
Introduction At the start of the COVID-19 pandemic there was an urgent need to identify individuals at highest risk of severe outcomes, such as hospitalisation and death following infection. The QCOVID risk prediction algorithms emerged as key tools in facilitating this which were further developed during the second wave of the COVID-19 pandemic to identify groups of people at highest risk of severe COVID-19 related outcomes following one or two doses of vaccine. Objectives To externally validate the QCOVID3 algorithm based on primary and secondary care records for Wales, UK. Methods We conducted an observational, prospective cohort based on electronic health care records for 1.66m vaccinated adults living in Wales on 8 th December 2020, with follow-up until 15 th June 2021. Follow-up started from day 14 post vaccination to allow the full effect of the vaccine. Results The scores produced by the QCOVID3 risk algorithm showed high levels of discrimination for both COVID-19 related deaths and hospital admissions and good calibration (Harrell C statistic: ≥ 0.828). Conclusion This validation of the updated QCOVID3 risk algorithms in the adult vaccinated Welsh population has shown that the algorithms are valid for use in the Welsh population, and applicable on a population independent of the original study, which has not been previously reported. This study provides further evidence that the QCOVID algorithms can help inform public health risk management on the ongoing surveillance and intervention to manage COVID-19 related risks.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pone.0285979
- https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0285979&type=printable
- OA Status
- gold
- Cited By
- 3
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4377047179
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4377047179Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pone.0285979Digital Object Identifier
- Title
-
An external validation of the QCOVID3 risk prediction algorithm for risk of hospitalisation and death from COVID-19: An observational, prospective cohort study of 1.66m vaccinated adults in Wales, UKWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-18Full publication date if available
- Authors
-
Jane Lyons, Vahé Nafilyan, Ashley Akbari, Stuart Bedston, Ewen M Harrison, Andrew Hayward, Julia Hippisley‐Cox, Frank Kee, Kamlesh Khunti, Shamim Rahman, Aziz Sheikh, Fatemeh Torabi, Ronan A LyonsList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pone.0285979Publisher landing page
- PDF URL
-
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0285979&type=printableDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0285979&type=printableDirect OA link when available
- Concepts
-
Observational study, Medicine, Population, Pandemic, Cohort study, Vaccination, Cohort, Algorithm, Coronavirus disease 2019 (COVID-19), Environmental health, Virology, Internal medicine, Computer science, Disease, Infectious disease (medical specialty)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4377047179 |
|---|---|
| doi | https://doi.org/10.1371/journal.pone.0285979 |
| ids.doi | https://doi.org/10.1371/journal.pone.0285979 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37200350 |
| ids.openalex | https://openalex.org/W4377047179 |
| fwci | 0.84502397 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000328 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Adult |
| mesh[2].qualifier_ui | Q000453 |
| mesh[2].descriptor_ui | D000086382 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | epidemiology |
| mesh[2].descriptor_name | COVID-19 |
| mesh[3].qualifier_ui | Q000517 |
| mesh[3].descriptor_ui | D000086382 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | prevention & control |
| mesh[3].descriptor_name | COVID-19 |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D011446 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Prospective Studies |
| mesh[5].qualifier_ui | Q000453 |
| mesh[5].descriptor_ui | D014852 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | epidemiology |
| mesh[5].descriptor_name | Wales |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D058873 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Pandemics |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D006760 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Hospitalization |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000465 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Algorithms |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D000328 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Adult |
| mesh[11].qualifier_ui | Q000453 |
| mesh[11].descriptor_ui | D000086382 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | epidemiology |
| mesh[11].descriptor_name | COVID-19 |
| mesh[12].qualifier_ui | Q000517 |
| mesh[12].descriptor_ui | D000086382 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | prevention & control |
| mesh[12].descriptor_name | COVID-19 |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D011446 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Prospective Studies |
| mesh[14].qualifier_ui | Q000453 |
| mesh[14].descriptor_ui | D014852 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | epidemiology |
| mesh[14].descriptor_name | Wales |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D058873 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Pandemics |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D006760 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Hospitalization |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000465 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Algorithms |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D006801 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Humans |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D000328 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Adult |
| mesh[20].qualifier_ui | Q000453 |
| mesh[20].descriptor_ui | D000086382 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | epidemiology |
| mesh[20].descriptor_name | COVID-19 |
| mesh[21].qualifier_ui | Q000517 |
| mesh[21].descriptor_ui | D000086382 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | prevention & control |
| mesh[21].descriptor_name | COVID-19 |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D011446 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Prospective Studies |
| mesh[23].qualifier_ui | Q000453 |
| mesh[23].descriptor_ui | D014852 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | epidemiology |
| mesh[23].descriptor_name | Wales |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D058873 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Pandemics |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D006760 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Hospitalization |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D000465 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Algorithms |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D006801 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Humans |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D000328 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Adult |
| mesh[29].qualifier_ui | Q000453 |
| mesh[29].descriptor_ui | D000086382 |
| mesh[29].is_major_topic | True |
| mesh[29].qualifier_name | epidemiology |
| mesh[29].descriptor_name | COVID-19 |
| mesh[30].qualifier_ui | Q000517 |
| mesh[30].descriptor_ui | D000086382 |
| mesh[30].is_major_topic | True |
| mesh[30].qualifier_name | prevention & control |
| mesh[30].descriptor_name | COVID-19 |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D011446 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Prospective Studies |
| mesh[32].qualifier_ui | Q000453 |
| mesh[32].descriptor_ui | D014852 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | epidemiology |
| mesh[32].descriptor_name | Wales |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D058873 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Pandemics |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D006760 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Hospitalization |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D000465 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Algorithms |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D006801 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Humans |
| mesh[37].qualifier_ui | |
| mesh[37].descriptor_ui | D000328 |
| mesh[37].is_major_topic | False |
| mesh[37].qualifier_name | |
| mesh[37].descriptor_name | Adult |
| mesh[38].qualifier_ui | Q000453 |
| mesh[38].descriptor_ui | D000086382 |
| mesh[38].is_major_topic | True |
| mesh[38].qualifier_name | epidemiology |
| mesh[38].descriptor_name | COVID-19 |
| mesh[39].qualifier_ui | Q000517 |
| mesh[39].descriptor_ui | D000086382 |
| mesh[39].is_major_topic | True |
| mesh[39].qualifier_name | prevention & control |
| mesh[39].descriptor_name | COVID-19 |
| mesh[40].qualifier_ui | |
| mesh[40].descriptor_ui | D011446 |
| mesh[40].is_major_topic | False |
| mesh[40].qualifier_name | |
| mesh[40].descriptor_name | Prospective Studies |
| mesh[41].qualifier_ui | Q000453 |
| mesh[41].descriptor_ui | D014852 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | epidemiology |
| mesh[41].descriptor_name | Wales |
| mesh[42].qualifier_ui | |
| mesh[42].descriptor_ui | D058873 |
| mesh[42].is_major_topic | False |
| mesh[42].qualifier_name | |
| mesh[42].descriptor_name | Pandemics |
| mesh[43].qualifier_ui | |
| mesh[43].descriptor_ui | D006760 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | |
| mesh[43].descriptor_name | Hospitalization |
| mesh[44].qualifier_ui | |
| mesh[44].descriptor_ui | D000465 |
| mesh[44].is_major_topic | False |
| mesh[44].qualifier_name | |
| mesh[44].descriptor_name | Algorithms |
| type | article |
| title | An external validation of the QCOVID3 risk prediction algorithm for risk of hospitalisation and death from COVID-19: An observational, prospective cohort study of 1.66m vaccinated adults in Wales, UK |
| awards[0].id | https://openalex.org/G5906047877 |
| awards[0].funder_id | https://openalex.org/F4320334630 |
| awards[0].display_name | |
| awards[0].funder_award_id | ES/S007393/1 |
| awards[0].funder_display_name | Economic and Social Research Council |
| awards[1].id | https://openalex.org/G8401079189 |
| awards[1].funder_id | https://openalex.org/F4320334626 |
| awards[1].display_name | |
| awards[1].funder_award_id | MR/ S027750/1 |
| awards[1].funder_display_name | Medical Research Council |
| biblio.issue | 5 |
| biblio.volume | 18 |
| biblio.last_page | e0285979 |
| biblio.first_page | e0285979 |
| topics[0].id | https://openalex.org/T10118 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2725 |
| topics[0].subfield.display_name | Infectious Diseases |
| topics[0].display_name | SARS-CoV-2 and COVID-19 Research |
| topics[1].id | https://openalex.org/T10833 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9977999925613403 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3306 |
| topics[1].subfield.display_name | Health |
| topics[1].display_name | Vaccine Coverage and Hesitancy |
| topics[2].id | https://openalex.org/T10041 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9969000220298767 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2725 |
| topics[2].subfield.display_name | Infectious Diseases |
| topics[2].display_name | COVID-19 Clinical Research Studies |
| funders[0].id | https://openalex.org/F4320334626 |
| funders[0].ror | https://ror.org/03x94j517 |
| funders[0].display_name | Medical Research Council |
| funders[1].id | https://openalex.org/F4320334630 |
| funders[1].ror | https://ror.org/03n0ht308 |
| funders[1].display_name | Economic and Social Research Council |
| is_xpac | False |
| apc_list.value | 1805 |
| apc_list.currency | USD |
| apc_list.value_usd | 1805 |
| apc_paid.value | 1805 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1805 |
| concepts[0].id | https://openalex.org/C23131810 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7064203023910522 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q818574 |
| concepts[0].display_name | Observational study |
| concepts[1].id | https://openalex.org/C71924100 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7053194046020508 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[1].display_name | Medicine |
| concepts[2].id | https://openalex.org/C2908647359 |
| concepts[2].level | 2 |
| concepts[2].score | 0.584871232509613 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[2].display_name | Population |
| concepts[3].id | https://openalex.org/C89623803 |
| concepts[3].level | 5 |
| concepts[3].score | 0.5667192935943604 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12184 |
| concepts[3].display_name | Pandemic |
| concepts[4].id | https://openalex.org/C201903717 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48555371165275574 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1778788 |
| concepts[4].display_name | Cohort study |
| concepts[5].id | https://openalex.org/C22070199 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45808473229408264 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192995 |
| concepts[5].display_name | Vaccination |
| concepts[6].id | https://openalex.org/C72563966 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43831485509872437 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1303415 |
| concepts[6].display_name | Cohort |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4312288463115692 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C3008058167 |
| concepts[8].level | 4 |
| concepts[8].score | 0.3097485303878784 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[8].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[9].id | https://openalex.org/C99454951 |
| concepts[9].level | 1 |
| concepts[9].score | 0.21419674158096313 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[9].display_name | Environmental health |
| concepts[10].id | https://openalex.org/C159047783 |
| concepts[10].level | 1 |
| concepts[10].score | 0.149630606174469 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7215 |
| concepts[10].display_name | Virology |
| concepts[11].id | https://openalex.org/C126322002 |
| concepts[11].level | 1 |
| concepts[11].score | 0.14326107501983643 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[11].display_name | Internal medicine |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.09932395815849304 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C2779134260 |
| concepts[13].level | 2 |
| concepts[13].score | 0.07453671097755432 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[13].display_name | Disease |
| concepts[14].id | https://openalex.org/C524204448 |
| concepts[14].level | 3 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[14].display_name | Infectious disease (medical specialty) |
| keywords[0].id | https://openalex.org/keywords/observational-study |
| keywords[0].score | 0.7064203023910522 |
| keywords[0].display_name | Observational study |
| keywords[1].id | https://openalex.org/keywords/medicine |
| keywords[1].score | 0.7053194046020508 |
| keywords[1].display_name | Medicine |
| keywords[2].id | https://openalex.org/keywords/population |
| keywords[2].score | 0.584871232509613 |
| keywords[2].display_name | Population |
| keywords[3].id | https://openalex.org/keywords/pandemic |
| keywords[3].score | 0.5667192935943604 |
| keywords[3].display_name | Pandemic |
| keywords[4].id | https://openalex.org/keywords/cohort-study |
| keywords[4].score | 0.48555371165275574 |
| keywords[4].display_name | Cohort study |
| keywords[5].id | https://openalex.org/keywords/vaccination |
| keywords[5].score | 0.45808473229408264 |
| keywords[5].display_name | Vaccination |
| keywords[6].id | https://openalex.org/keywords/cohort |
| keywords[6].score | 0.43831485509872437 |
| keywords[6].display_name | Cohort |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.4312288463115692 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[8].score | 0.3097485303878784 |
| keywords[8].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[9].id | https://openalex.org/keywords/environmental-health |
| keywords[9].score | 0.21419674158096313 |
| keywords[9].display_name | Environmental health |
| keywords[10].id | https://openalex.org/keywords/virology |
| keywords[10].score | 0.149630606174469 |
| keywords[10].display_name | Virology |
| keywords[11].id | https://openalex.org/keywords/internal-medicine |
| keywords[11].score | 0.14326107501983643 |
| keywords[11].display_name | Internal medicine |
| keywords[12].id | https://openalex.org/keywords/computer-science |
| keywords[12].score | 0.09932395815849304 |
| keywords[12].display_name | Computer science |
| keywords[13].id | https://openalex.org/keywords/disease |
| keywords[13].score | 0.07453671097755432 |
| keywords[13].display_name | Disease |
| language | en |
| locations[0].id | doi:10.1371/journal.pone.0285979 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S202381698 |
| locations[0].source.issn | 1932-6203 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1932-6203 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLoS ONE |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_lineage_names | Public Library of Science |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0285979&type=printable |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS ONE |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pone.0285979 |
| locations[1].id | pmid:37200350 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PloS one |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37200350 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10194890 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10194890/pdf/pone.0285979.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | PLoS One |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10194890 |
| locations[3].id | pmh:oai:pure.ed.ac.uk:publications/377dccc0-59de-4d0e-a2f5-0747c9cc62c9 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400320 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Edinburgh Research Explorer (University of Edinburgh) |
| locations[3].source.host_organization | https://openalex.org/I98677209 |
| locations[3].source.host_organization_name | University of Edinburgh |
| locations[3].source.host_organization_lineage | https://openalex.org/I98677209 |
| locations[3].license | cc-by |
| locations[3].pdf_url | https://hdl.handle.net/20.500.11820/377dccc0-59de-4d0e-a2f5-0747c9cc62c9 |
| locations[3].version | submittedVersion |
| locations[3].raw_type | |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.research.ed.ac.uk/en/publications/377dccc0-59de-4d0e-a2f5-0747c9cc62c9 |
| locations[4].id | pmh:oai:doaj.org/article:5946132b15cb4e03b8cdbb980500d18b |
| locations[4].is_oa | False |
| locations[4].source.id | https://openalex.org/S4306401280 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[4].source.host_organization | |
| locations[4].source.host_organization_name | |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | article |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | PLoS ONE, Vol 18, Iss 5, p e0285979 (2023) |
| locations[4].landing_page_url | https://doaj.org/article/5946132b15cb4e03b8cdbb980500d18b |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5031102856 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4407-770X |
| authorships[0].author.display_name | Jane Lyons |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I39586589 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Medicine, Health & Life Science, Population Data Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom |
| authorships[0].institutions[0].id | https://openalex.org/I39586589 |
| authorships[0].institutions[0].ror | https://ror.org/053fq8t95 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I39586589 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Swansea University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jane Lyons |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Faculty of Medicine, Health & Life Science, Population Data Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom |
| authorships[1].author.id | https://openalex.org/A5080329288 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0160-217X |
| authorships[1].author.display_name | Vahé Nafilyan |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1327095140 |
| authorships[1].affiliations[0].raw_affiliation_string | Office of National Statistics, Newport, United Kingdom |
| authorships[1].institutions[0].id | https://openalex.org/I1327095140 |
| authorships[1].institutions[0].ror | https://ror.org/021fhft25 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I1327095140 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Office for National Statistics |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Vahé Nafilyan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Office of National Statistics, Newport, United Kingdom |
| authorships[2].author.id | https://openalex.org/A5033011934 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0814-0801 |
| authorships[2].author.display_name | Ashley Akbari |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I39586589 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Medicine, Health & Life Science, Population Data Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom |
| authorships[2].institutions[0].id | https://openalex.org/I39586589 |
| authorships[2].institutions[0].ror | https://ror.org/053fq8t95 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I39586589 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Swansea University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ashley Akbari |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Faculty of Medicine, Health & Life Science, Population Data Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom |
| authorships[3].author.id | https://openalex.org/A5038083978 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5635-5957 |
| authorships[3].author.display_name | Stuart Bedston |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I39586589 |
| authorships[3].affiliations[0].raw_affiliation_string | Faculty of Medicine, Health & Life Science, Population Data Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom |
| authorships[3].institutions[0].id | https://openalex.org/I39586589 |
| authorships[3].institutions[0].ror | https://ror.org/053fq8t95 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I39586589 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | Swansea University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Stuart Bedston |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Faculty of Medicine, Health & Life Science, Population Data Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom |
| authorships[4].author.id | https://openalex.org/A5075334231 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5018-3066 |
| authorships[4].author.display_name | Ewen M Harrison |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I98677209 |
| authorships[4].affiliations[0].raw_affiliation_string | Usher Institute, Centre for Medical Informatics, University of Edinburgh, Edinburgh, United Kingdom |
| authorships[4].institutions[0].id | https://openalex.org/I98677209 |
| authorships[4].institutions[0].ror | https://ror.org/01nrxwf90 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I98677209 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | University of Edinburgh |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ewen Harrison |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Usher Institute, Centre for Medical Informatics, University of Edinburgh, Edinburgh, United Kingdom |
| authorships[5].author.id | https://openalex.org/A5015267327 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3549-6232 |
| authorships[5].author.display_name | Andrew Hayward |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Epidemiology and Public Health, University College London, London, United Kingdom |
| authorships[5].institutions[0].id | https://openalex.org/I45129253 |
| authorships[5].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | University College London |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Andrew Hayward |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Epidemiology and Public Health, University College London, London, United Kingdom |
| authorships[6].author.id | https://openalex.org/A5004448187 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2479-7283 |
| authorships[6].author.display_name | Julia Hippisley‐Cox |
| authorships[6].countries | GB |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[6].affiliations[0].raw_affiliation_string | Nuffield Department, Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom |
| authorships[6].institutions[0].id | https://openalex.org/I40120149 |
| authorships[6].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[6].institutions[0].country_code | GB |
| authorships[6].institutions[0].display_name | University of Oxford |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Julia Hippisley-Cox |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Nuffield Department, Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom |
| authorships[7].author.id | https://openalex.org/A5041740967 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-0606-8167 |
| authorships[7].author.display_name | Frank Kee |
| authorships[7].countries | GB |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I126231945 |
| authorships[7].affiliations[0].raw_affiliation_string | School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom |
| authorships[7].institutions[0].id | https://openalex.org/I126231945 |
| authorships[7].institutions[0].ror | https://ror.org/00hswnk62 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I126231945 |
| authorships[7].institutions[0].country_code | GB |
| authorships[7].institutions[0].display_name | Queen's University Belfast |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Frank Kee |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom |
| authorships[8].author.id | https://openalex.org/A5083222970 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-2343-7099 |
| authorships[8].author.display_name | Kamlesh Khunti |
| authorships[8].countries | GB |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I153648349 |
| authorships[8].affiliations[0].raw_affiliation_string | Diabetes Research Centre, University of Leicester, Leicester, United Kingdom |
| authorships[8].institutions[0].id | https://openalex.org/I153648349 |
| authorships[8].institutions[0].ror | https://ror.org/04h699437 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I153648349 |
| authorships[8].institutions[0].country_code | GB |
| authorships[8].institutions[0].display_name | University of Leicester |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Kamlesh Khunti |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Diabetes Research Centre, University of Leicester, Leicester, United Kingdom |
| authorships[9].author.id | https://openalex.org/A5110217811 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-4994-4366 |
| authorships[9].author.display_name | Shamim Rahman |
| authorships[9].countries | GB |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I1311074006 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Health and Social Care, Mental Health and Disabilities Analysis, London, United Kingdom |
| authorships[9].institutions[0].id | https://openalex.org/I1311074006 |
| authorships[9].institutions[0].ror | https://ror.org/03sbpja79 |
| authorships[9].institutions[0].type | government |
| authorships[9].institutions[0].lineage | https://openalex.org/I1311074006 |
| authorships[9].institutions[0].country_code | GB |
| authorships[9].institutions[0].display_name | Department of Health and Social Care |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Shamim Rahman |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Health and Social Care, Mental Health and Disabilities Analysis, London, United Kingdom |
| authorships[10].author.id | https://openalex.org/A5026215303 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-7022-3056 |
| authorships[10].author.display_name | Aziz Sheikh |
| authorships[10].countries | GB |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I98677209 |
| authorships[10].affiliations[0].raw_affiliation_string | Usher Institute, University of Edinburgh, Edinburgh, United Kingdom |
| authorships[10].institutions[0].id | https://openalex.org/I98677209 |
| authorships[10].institutions[0].ror | https://ror.org/01nrxwf90 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I98677209 |
| authorships[10].institutions[0].country_code | GB |
| authorships[10].institutions[0].display_name | University of Edinburgh |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Aziz Sheikh |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Usher Institute, University of Edinburgh, Edinburgh, United Kingdom |
| authorships[11].author.id | https://openalex.org/A5017489363 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-5853-4625 |
| authorships[11].author.display_name | Fatemeh Torabi |
| authorships[11].countries | GB |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I39586589 |
| authorships[11].affiliations[0].raw_affiliation_string | Faculty of Medicine, Health & Life Science, Population Data Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom |
| authorships[11].institutions[0].id | https://openalex.org/I39586589 |
| authorships[11].institutions[0].ror | https://ror.org/053fq8t95 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I39586589 |
| authorships[11].institutions[0].country_code | GB |
| authorships[11].institutions[0].display_name | Swansea University |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Fatemeh Torabi |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Faculty of Medicine, Health & Life Science, Population Data Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom |
| authorships[12].author.id | https://openalex.org/A5086157485 |
| authorships[12].author.orcid | https://orcid.org/0000-0001-5225-000X |
| authorships[12].author.display_name | Ronan A Lyons |
| authorships[12].countries | GB |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I39586589 |
| authorships[12].affiliations[0].raw_affiliation_string | Faculty of Medicine, Health & Life Science, Population Data Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom |
| authorships[12].institutions[0].id | https://openalex.org/I39586589 |
| authorships[12].institutions[0].ror | https://ror.org/053fq8t95 |
| authorships[12].institutions[0].type | education |
| authorships[12].institutions[0].lineage | https://openalex.org/I39586589 |
| authorships[12].institutions[0].country_code | GB |
| authorships[12].institutions[0].display_name | Swansea University |
| authorships[12].author_position | last |
| authorships[12].raw_author_name | Ronan A. Lyons |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Faculty of Medicine, Health & Life Science, Population Data Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0285979&type=printable |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An external validation of the QCOVID3 risk prediction algorithm for risk of hospitalisation and death from COVID-19: An observational, prospective cohort study of 1.66m vaccinated adults in Wales, UK |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10118 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2725 |
| primary_topic.subfield.display_name | Infectious Diseases |
| primary_topic.display_name | SARS-CoV-2 and COVID-19 Research |
| related_works | https://openalex.org/W2128797028, https://openalex.org/W4235252973, https://openalex.org/W2943855382, https://openalex.org/W1606496894, https://openalex.org/W3081332639, https://openalex.org/W2782606626, https://openalex.org/W2055704044, https://openalex.org/W1986135018, https://openalex.org/W2148718224, https://openalex.org/W2103425699 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.1371/journal.pone.0285979 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S202381698 |
| best_oa_location.source.issn | 1932-6203 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1932-6203 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLoS ONE |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_lineage_names | Public Library of Science |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0285979&type=printable |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS ONE |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pone.0285979 |
| primary_location.id | doi:10.1371/journal.pone.0285979 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S202381698 |
| primary_location.source.issn | 1932-6203 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1932-6203 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLoS ONE |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_lineage_names | Public Library of Science |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0285979&type=printable |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS ONE |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pone.0285979 |
| publication_date | 2023-05-18 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3094542430, https://openalex.org/W3164719666, https://openalex.org/W4212784128, https://openalex.org/W3213055150, https://openalex.org/W4206823545, https://openalex.org/W3202826390, https://openalex.org/W3111255098, https://openalex.org/W4214881818, https://openalex.org/W3202234535, https://openalex.org/W3201642119, https://openalex.org/W3014524604, https://openalex.org/W4210677265, https://openalex.org/W4282837333, https://openalex.org/W2599076725, https://openalex.org/W2078271269, https://openalex.org/W2060363472, https://openalex.org/W2108510859, https://openalex.org/W2132392106, https://openalex.org/W2129925362, https://openalex.org/W2159966843, https://openalex.org/W4206930943, https://openalex.org/W4226310502, https://openalex.org/W4248429808, https://openalex.org/W4226139336 |
| referenced_works_count | 24 |
| abstract_inverted_index.8 | 111 |
| abstract_inverted_index.C | 163 |
| abstract_inverted_index.a | 198 |
| abstract_inverted_index.14 | 126 |
| abstract_inverted_index.15 | 118 |
| abstract_inverted_index.At | 1 |
| abstract_inverted_index.To | 74 |
| abstract_inverted_index.We | 91 |
| abstract_inverted_index.an | 10, 93 |
| abstract_inverted_index.as | 23, 35 |
| abstract_inverted_index.at | 16, 58 |
| abstract_inverted_index.by | 141 |
| abstract_inverted_index.in | 38, 108, 176, 191 |
| abstract_inverted_index.of | 4, 19, 49, 56, 61, 71, 134, 149, 170, 201 |
| abstract_inverted_index.on | 81, 98, 110, 197, 227 |
| abstract_inverted_index.or | 68 |
| abstract_inverted_index.th | 112, 119 |
| abstract_inverted_index.to | 13, 53, 129, 233 |
| abstract_inverted_index.The | 29, 138 |
| abstract_inverted_index.UK. | 89 |
| abstract_inverted_index.and | 25, 83, 156, 159, 195, 231 |
| abstract_inverted_index.are | 187 |
| abstract_inverted_index.can | 220 |
| abstract_inverted_index.day | 125 |
| abstract_inverted_index.for | 87, 103, 151, 189 |
| abstract_inverted_index.has | 182, 206 |
| abstract_inverted_index.key | 36 |
| abstract_inverted_index.not | 207 |
| abstract_inverted_index.one | 67 |
| abstract_inverted_index.the | 2, 5, 46, 50, 77, 131, 135, 142, 171, 177, 185, 192, 202, 217, 228 |
| abstract_inverted_index.two | 69 |
| abstract_inverted_index.use | 190 |
| abstract_inverted_index.was | 9 |
| abstract_inverted_index.≥ | 165 |
| abstract_inverted_index.June | 120 |
| abstract_inverted_index.This | 168, 211 |
| abstract_inverted_index.been | 208 |
| abstract_inverted_index.both | 152 |
| abstract_inverted_index.care | 85, 101 |
| abstract_inverted_index.from | 124 |
| abstract_inverted_index.full | 132 |
| abstract_inverted_index.good | 160 |
| abstract_inverted_index.help | 221 |
| abstract_inverted_index.high | 147 |
| abstract_inverted_index.need | 12 |
| abstract_inverted_index.post | 127 |
| abstract_inverted_index.risk | 18, 31, 60, 144, 174, 225 |
| abstract_inverted_index.such | 22 |
| abstract_inverted_index.that | 184, 216 |
| abstract_inverted_index.this | 40 |
| abstract_inverted_index.wave | 48 |
| abstract_inverted_index.were | 42 |
| abstract_inverted_index.with | 115 |
| abstract_inverted_index.1.66m | 104 |
| abstract_inverted_index.2020, | 114 |
| abstract_inverted_index.2021. | 121 |
| abstract_inverted_index.Wales | 109 |
| abstract_inverted_index.Welsh | 180, 193 |
| abstract_inverted_index.adult | 178 |
| abstract_inverted_index.allow | 130 |
| abstract_inverted_index.based | 80, 97 |
| abstract_inverted_index.death | 26 |
| abstract_inverted_index.doses | 70 |
| abstract_inverted_index.shown | 183 |
| abstract_inverted_index.start | 3 |
| abstract_inverted_index.study | 212 |
| abstract_inverted_index.there | 8 |
| abstract_inverted_index.tools | 37 |
| abstract_inverted_index.until | 117 |
| abstract_inverted_index.valid | 188 |
| abstract_inverted_index.which | 41, 205 |
| abstract_inverted_index.QCOVID | 30, 218 |
| abstract_inverted_index.Wales, | 88 |
| abstract_inverted_index.adults | 106 |
| abstract_inverted_index.cohort | 96 |
| abstract_inverted_index.deaths | 155 |
| abstract_inverted_index.during | 45 |
| abstract_inverted_index.effect | 133 |
| abstract_inverted_index.groups | 55 |
| abstract_inverted_index.health | 100, 224 |
| abstract_inverted_index.inform | 222 |
| abstract_inverted_index.levels | 148 |
| abstract_inverted_index.living | 107 |
| abstract_inverted_index.manage | 234 |
| abstract_inverted_index.people | 57 |
| abstract_inverted_index.public | 223 |
| abstract_inverted_index.risks. | 237 |
| abstract_inverted_index.scores | 139 |
| abstract_inverted_index.second | 47 |
| abstract_inverted_index.severe | 20, 62 |
| abstract_inverted_index.showed | 146 |
| abstract_inverted_index.study, | 204 |
| abstract_inverted_index.urgent | 11 |
| abstract_inverted_index.0.828). | 166 |
| abstract_inverted_index.Methods | 90 |
| abstract_inverted_index.QCOVID3 | 78, 143, 173 |
| abstract_inverted_index.Results | 137 |
| abstract_inverted_index.emerged | 34 |
| abstract_inverted_index.further | 43, 214 |
| abstract_inverted_index.highest | 17, 59 |
| abstract_inverted_index.ongoing | 229 |
| abstract_inverted_index.primary | 82 |
| abstract_inverted_index.records | 86, 102 |
| abstract_inverted_index.related | 64, 154, 236 |
| abstract_inverted_index.started | 123 |
| abstract_inverted_index.updated | 172 |
| abstract_inverted_index.(Harrell | 162 |
| abstract_inverted_index.COVID-19 | 6, 51, 63, 153, 235 |
| abstract_inverted_index.December | 113 |
| abstract_inverted_index.evidence | 215 |
| abstract_inverted_index.hospital | 157 |
| abstract_inverted_index.identify | 14, 54 |
| abstract_inverted_index.original | 203 |
| abstract_inverted_index.outcomes | 65 |
| abstract_inverted_index.pandemic | 7, 52 |
| abstract_inverted_index.produced | 140 |
| abstract_inverted_index.provides | 213 |
| abstract_inverted_index.vaccine. | 72, 136 |
| abstract_inverted_index.validate | 76 |
| abstract_inverted_index.Follow-up | 122 |
| abstract_inverted_index.algorithm | 79, 145 |
| abstract_inverted_index.conducted | 92 |
| abstract_inverted_index.developed | 44 |
| abstract_inverted_index.follow-up | 116 |
| abstract_inverted_index.following | 27, 66 |
| abstract_inverted_index.outcomes, | 21 |
| abstract_inverted_index.reported. | 210 |
| abstract_inverted_index.secondary | 84 |
| abstract_inverted_index.Conclusion | 167 |
| abstract_inverted_index.Objectives | 73 |
| abstract_inverted_index.admissions | 158 |
| abstract_inverted_index.algorithms | 33, 175, 186, 219 |
| abstract_inverted_index.applicable | 196 |
| abstract_inverted_index.electronic | 99 |
| abstract_inverted_index.externally | 75 |
| abstract_inverted_index.infection. | 28 |
| abstract_inverted_index.management | 226 |
| abstract_inverted_index.population | 181, 199 |
| abstract_inverted_index.prediction | 32 |
| abstract_inverted_index.previously | 209 |
| abstract_inverted_index.statistic: | 164 |
| abstract_inverted_index.vaccinated | 105, 179 |
| abstract_inverted_index.validation | 169 |
| abstract_inverted_index.calibration | 161 |
| abstract_inverted_index.independent | 200 |
| abstract_inverted_index.individuals | 15 |
| abstract_inverted_index.population, | 194 |
| abstract_inverted_index.prospective | 95 |
| abstract_inverted_index.vaccination | 128 |
| abstract_inverted_index.Introduction | 0 |
| abstract_inverted_index.facilitating | 39 |
| abstract_inverted_index.intervention | 232 |
| abstract_inverted_index.surveillance | 230 |
| abstract_inverted_index.discrimination | 150 |
| abstract_inverted_index.observational, | 94 |
| abstract_inverted_index.hospitalisation | 24 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5031102856 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 13 |
| corresponding_institution_ids | https://openalex.org/I39586589 |
| citation_normalized_percentile.value | 0.67461013 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |