An Image is Worth Multiple Words: Multi-attribute Inversion for Constrained Text-to-Image Synthesis Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2311.11919
We consider the problem of constraining diffusion model outputs with a user-supplied reference image. Our key objective is to extract multiple attributes (e.g., color, object, layout, style) from this single reference image, and then generate new samples with them. One line of existing work proposes to invert the reference images into a single textual conditioning vector, enabling generation of new samples with this learned token. These methods, however, do not learn multiple tokens that are necessary to condition model outputs on the multiple attributes noted above. Another line of techniques expand the inversion space to learn multiple embeddings but they do this only along the layer dimension (e.g., one per layer of the DDPM model) or the timestep dimension (one for a set of timesteps in the denoising process), leading to suboptimal attribute disentanglement. To address the aforementioned gaps, the first contribution of this paper is an extensive analysis to determine which attributes are captured in which dimension of the denoising process. As noted above, we consider both the time-step dimension (in reverse denoising) as well as the DDPM model layer dimension. We observe that often a subset of these attributes are captured in the same set of model layers and/or across same denoising timesteps. For instance, color and style are captured across same U-Net layers, whereas layout and color are captured across same timestep stages. Consequently, an inversion process that is designed only for the time-step dimension or the layer dimension is insufficient to disentangle all attributes. This leads to our second contribution where we design a new multi-attribute inversion algorithm, MATTE, with associated disentanglement-enhancing regularization losses, that operates across both dimensions and explicitly leads to four disentangled tokens (color, style, layout, and object).
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2311.11919
- https://arxiv.org/pdf/2311.11919
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388926651
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388926651Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2311.11919Digital Object Identifier
- Title
-
An Image is Worth Multiple Words: Multi-attribute Inversion for Constrained Text-to-Image SynthesisWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-20Full publication date if available
- Authors
-
Aishwarya Agarwal, Srikrishna Karanam, Tripti Shukla, B. SrinivasanList of authors in order
- Landing page
-
https://arxiv.org/abs/2311.11919Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2311.11919Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2311.11919Direct OA link when available
- Concepts
-
Computer science, Dimension (graph theory), Inversion (geology), Dimensionality reduction, Artificial intelligence, Set (abstract data type), Noise reduction, Pattern recognition (psychology), Process (computing), Image (mathematics), Algorithm, Mathematics, Pure mathematics, Operating system, Structural basin, Programming language, Paleontology, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388926651 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2311.11919 |
| ids.doi | https://doi.org/10.48550/arxiv.2311.11919 |
| ids.openalex | https://openalex.org/W4388926651 |
| fwci | |
| type | preprint |
| title | An Image is Worth Multiple Words: Multi-attribute Inversion for Constrained Text-to-Image Synthesis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10775 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[1].id | https://openalex.org/T10824 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9829000234603882 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image Retrieval and Classification Techniques |
| topics[2].id | https://openalex.org/T10481 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9771999716758728 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1704 |
| topics[2].subfield.display_name | Computer Graphics and Computer-Aided Design |
| topics[2].display_name | Computer Graphics and Visualization Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6628695726394653 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C33676613 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6108543276786804 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[1].display_name | Dimension (graph theory) |
| concepts[2].id | https://openalex.org/C1893757 |
| concepts[2].level | 3 |
| concepts[2].score | 0.558497965335846 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3653001 |
| concepts[2].display_name | Inversion (geology) |
| concepts[3].id | https://openalex.org/C70518039 |
| concepts[3].level | 2 |
| concepts[3].score | 0.501457929611206 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[3].display_name | Dimensionality reduction |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4927261173725128 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C177264268 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48142263293266296 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[5].display_name | Set (abstract data type) |
| concepts[6].id | https://openalex.org/C163294075 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4634641706943512 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[6].display_name | Noise reduction |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4443686306476593 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C98045186 |
| concepts[8].level | 2 |
| concepts[8].score | 0.439574658870697 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[8].display_name | Process (computing) |
| concepts[9].id | https://openalex.org/C115961682 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4382578134536743 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[9].display_name | Image (mathematics) |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.39714837074279785 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.21129393577575684 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C202444582 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[12].display_name | Pure mathematics |
| concepts[13].id | https://openalex.org/C111919701 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[13].display_name | Operating system |
| concepts[14].id | https://openalex.org/C109007969 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q749565 |
| concepts[14].display_name | Structural basin |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| concepts[16].id | https://openalex.org/C151730666 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[16].display_name | Paleontology |
| concepts[17].id | https://openalex.org/C86803240 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[17].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6628695726394653 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/dimension |
| keywords[1].score | 0.6108543276786804 |
| keywords[1].display_name | Dimension (graph theory) |
| keywords[2].id | https://openalex.org/keywords/inversion |
| keywords[2].score | 0.558497965335846 |
| keywords[2].display_name | Inversion (geology) |
| keywords[3].id | https://openalex.org/keywords/dimensionality-reduction |
| keywords[3].score | 0.501457929611206 |
| keywords[3].display_name | Dimensionality reduction |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4927261173725128 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/set |
| keywords[5].score | 0.48142263293266296 |
| keywords[5].display_name | Set (abstract data type) |
| keywords[6].id | https://openalex.org/keywords/noise-reduction |
| keywords[6].score | 0.4634641706943512 |
| keywords[6].display_name | Noise reduction |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.4443686306476593 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/process |
| keywords[8].score | 0.439574658870697 |
| keywords[8].display_name | Process (computing) |
| keywords[9].id | https://openalex.org/keywords/image |
| keywords[9].score | 0.4382578134536743 |
| keywords[9].display_name | Image (mathematics) |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.39714837074279785 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.21129393577575684 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2311.11919 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2311.11919 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2311.11919 |
| locations[1].id | doi:10.48550/arxiv.2311.11919 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2311.11919 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5001544818 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Aishwarya Agarwal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Agarwal, Aishwarya |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5044410531 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7627-7765 |
| authorships[1].author.display_name | Srikrishna Karanam |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Karanam, Srikrishna |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5013402151 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8250-2431 |
| authorships[2].author.display_name | Tripti Shukla |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shukla, Tripti |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5059650977 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3118-5779 |
| authorships[3].author.display_name | B. Srinivasan |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Srinivasan, Balaji Vasan |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2311.11919 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-11-23T00:00:00 |
| display_name | An Image is Worth Multiple Words: Multi-attribute Inversion for Constrained Text-to-Image Synthesis |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10775 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Generative Adversarial Networks and Image Synthesis |
| related_works | https://openalex.org/W3176621072, https://openalex.org/W1980470275, https://openalex.org/W2995475466, https://openalex.org/W2356785732, https://openalex.org/W2086322839, https://openalex.org/W4239033281, https://openalex.org/W4380789568, https://openalex.org/W3105745662, https://openalex.org/W4210430843, https://openalex.org/W2344971351 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2311.11919 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2311.11919 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2311.11919 |
| primary_location.id | pmh:oai:arXiv.org:2311.11919 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2311.11919 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2311.11919 |
| publication_date | 2023-11-20 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 10, 51, 121, 186, 257 |
| abstract_inverted_index.As | 162 |
| abstract_inverted_index.To | 134 |
| abstract_inverted_index.We | 0, 182 |
| abstract_inverted_index.an | 146, 227 |
| abstract_inverted_index.as | 174, 176 |
| abstract_inverted_index.do | 68, 100 |
| abstract_inverted_index.in | 125, 155, 193 |
| abstract_inverted_index.is | 17, 145, 231, 242 |
| abstract_inverted_index.of | 4, 41, 58, 88, 111, 123, 142, 158, 188, 197 |
| abstract_inverted_index.on | 80 |
| abstract_inverted_index.or | 115, 238 |
| abstract_inverted_index.to | 18, 45, 76, 94, 130, 149, 244, 250, 276 |
| abstract_inverted_index.we | 165, 255 |
| abstract_inverted_index.(in | 171 |
| abstract_inverted_index.For | 205 |
| abstract_inverted_index.One | 39 |
| abstract_inverted_index.Our | 14 |
| abstract_inverted_index.all | 246 |
| abstract_inverted_index.and | 32, 208, 218, 273, 283 |
| abstract_inverted_index.are | 74, 153, 191, 210, 220 |
| abstract_inverted_index.but | 98 |
| abstract_inverted_index.for | 120, 234 |
| abstract_inverted_index.key | 15 |
| abstract_inverted_index.new | 35, 59, 258 |
| abstract_inverted_index.not | 69 |
| abstract_inverted_index.one | 108 |
| abstract_inverted_index.our | 251 |
| abstract_inverted_index.per | 109 |
| abstract_inverted_index.set | 122, 196 |
| abstract_inverted_index.the | 2, 47, 81, 91, 104, 112, 116, 126, 136, 139, 159, 168, 177, 194, 235, 239 |
| abstract_inverted_index.(one | 119 |
| abstract_inverted_index.DDPM | 113, 178 |
| abstract_inverted_index.This | 248 |
| abstract_inverted_index.both | 167, 271 |
| abstract_inverted_index.four | 277 |
| abstract_inverted_index.from | 27 |
| abstract_inverted_index.into | 50 |
| abstract_inverted_index.line | 40, 87 |
| abstract_inverted_index.only | 102, 233 |
| abstract_inverted_index.same | 195, 202, 213, 223 |
| abstract_inverted_index.that | 73, 184, 230, 268 |
| abstract_inverted_index.then | 33 |
| abstract_inverted_index.they | 99 |
| abstract_inverted_index.this | 28, 62, 101, 143 |
| abstract_inverted_index.well | 175 |
| abstract_inverted_index.with | 9, 37, 61, 263 |
| abstract_inverted_index.work | 43 |
| abstract_inverted_index.These | 65 |
| abstract_inverted_index.U-Net | 214 |
| abstract_inverted_index.along | 103 |
| abstract_inverted_index.color | 207, 219 |
| abstract_inverted_index.first | 140 |
| abstract_inverted_index.gaps, | 138 |
| abstract_inverted_index.layer | 105, 110, 180, 240 |
| abstract_inverted_index.leads | 249, 275 |
| abstract_inverted_index.learn | 70, 95 |
| abstract_inverted_index.model | 7, 78, 179, 198 |
| abstract_inverted_index.noted | 84, 163 |
| abstract_inverted_index.often | 185 |
| abstract_inverted_index.paper | 144 |
| abstract_inverted_index.space | 93 |
| abstract_inverted_index.style | 209 |
| abstract_inverted_index.them. | 38 |
| abstract_inverted_index.these | 189 |
| abstract_inverted_index.where | 254 |
| abstract_inverted_index.which | 151, 156 |
| abstract_inverted_index.(e.g., | 22, 107 |
| abstract_inverted_index.MATTE, | 262 |
| abstract_inverted_index.above, | 164 |
| abstract_inverted_index.above. | 85 |
| abstract_inverted_index.across | 201, 212, 222, 270 |
| abstract_inverted_index.and/or | 200 |
| abstract_inverted_index.color, | 23 |
| abstract_inverted_index.design | 256 |
| abstract_inverted_index.expand | 90 |
| abstract_inverted_index.image, | 31 |
| abstract_inverted_index.image. | 13 |
| abstract_inverted_index.images | 49 |
| abstract_inverted_index.invert | 46 |
| abstract_inverted_index.layers | 199 |
| abstract_inverted_index.layout | 217 |
| abstract_inverted_index.model) | 114 |
| abstract_inverted_index.second | 252 |
| abstract_inverted_index.single | 29, 52 |
| abstract_inverted_index.style) | 26 |
| abstract_inverted_index.style, | 281 |
| abstract_inverted_index.subset | 187 |
| abstract_inverted_index.token. | 64 |
| abstract_inverted_index.tokens | 72, 279 |
| abstract_inverted_index.(color, | 280 |
| abstract_inverted_index.Another | 86 |
| abstract_inverted_index.address | 135 |
| abstract_inverted_index.extract | 19 |
| abstract_inverted_index.layers, | 215 |
| abstract_inverted_index.layout, | 25, 282 |
| abstract_inverted_index.leading | 129 |
| abstract_inverted_index.learned | 63 |
| abstract_inverted_index.losses, | 267 |
| abstract_inverted_index.object, | 24 |
| abstract_inverted_index.observe | 183 |
| abstract_inverted_index.outputs | 8, 79 |
| abstract_inverted_index.problem | 3 |
| abstract_inverted_index.process | 229 |
| abstract_inverted_index.reverse | 172 |
| abstract_inverted_index.samples | 36, 60 |
| abstract_inverted_index.stages. | 225 |
| abstract_inverted_index.textual | 53 |
| abstract_inverted_index.vector, | 55 |
| abstract_inverted_index.whereas | 216 |
| abstract_inverted_index.analysis | 148 |
| abstract_inverted_index.captured | 154, 192, 211, 221 |
| abstract_inverted_index.consider | 1, 166 |
| abstract_inverted_index.designed | 232 |
| abstract_inverted_index.enabling | 56 |
| abstract_inverted_index.existing | 42 |
| abstract_inverted_index.generate | 34 |
| abstract_inverted_index.however, | 67 |
| abstract_inverted_index.methods, | 66 |
| abstract_inverted_index.multiple | 20, 71, 82, 96 |
| abstract_inverted_index.object). | 284 |
| abstract_inverted_index.operates | 269 |
| abstract_inverted_index.process. | 161 |
| abstract_inverted_index.proposes | 44 |
| abstract_inverted_index.timestep | 117, 224 |
| abstract_inverted_index.attribute | 132 |
| abstract_inverted_index.condition | 77 |
| abstract_inverted_index.denoising | 127, 160, 203 |
| abstract_inverted_index.determine | 150 |
| abstract_inverted_index.diffusion | 6 |
| abstract_inverted_index.dimension | 106, 118, 157, 170, 237, 241 |
| abstract_inverted_index.extensive | 147 |
| abstract_inverted_index.instance, | 206 |
| abstract_inverted_index.inversion | 92, 228, 260 |
| abstract_inverted_index.necessary | 75 |
| abstract_inverted_index.objective | 16 |
| abstract_inverted_index.process), | 128 |
| abstract_inverted_index.reference | 12, 30, 48 |
| abstract_inverted_index.time-step | 169, 236 |
| abstract_inverted_index.timesteps | 124 |
| abstract_inverted_index.algorithm, | 261 |
| abstract_inverted_index.associated | 264 |
| abstract_inverted_index.attributes | 21, 83, 152, 190 |
| abstract_inverted_index.denoising) | 173 |
| abstract_inverted_index.dimension. | 181 |
| abstract_inverted_index.dimensions | 272 |
| abstract_inverted_index.embeddings | 97 |
| abstract_inverted_index.explicitly | 274 |
| abstract_inverted_index.generation | 57 |
| abstract_inverted_index.suboptimal | 131 |
| abstract_inverted_index.techniques | 89 |
| abstract_inverted_index.timesteps. | 204 |
| abstract_inverted_index.attributes. | 247 |
| abstract_inverted_index.disentangle | 245 |
| abstract_inverted_index.conditioning | 54 |
| abstract_inverted_index.constraining | 5 |
| abstract_inverted_index.contribution | 141, 253 |
| abstract_inverted_index.disentangled | 278 |
| abstract_inverted_index.insufficient | 243 |
| abstract_inverted_index.Consequently, | 226 |
| abstract_inverted_index.user-supplied | 11 |
| abstract_inverted_index.aforementioned | 137 |
| abstract_inverted_index.regularization | 266 |
| abstract_inverted_index.multi-attribute | 259 |
| abstract_inverted_index.disentanglement. | 133 |
| abstract_inverted_index.disentanglement-enhancing | 265 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |