An Improved Boundary-Aware U-Net for Ore Image Semantic Segmentation Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/s21082615
Particle size is the most important index to reflect the crushing quality of ores, and the accuracy of particle size statistics directly affects the subsequent operation of mines. Accurate ore image segmentation is an important prerequisite to ensure the reliability of particle size statistics. However, given the diversity of the size and shape of ores, the influence of dust and light, the complex texture and shadows on the ore surface, and especially the adhesion between ores, it is difficult to segment ore images accurately, and under-segmentation can be a serious problem. The construction of a large, labeled dataset for complex and unclear conveyor belt ore images is also difficult. In response to these challenges, we propose a novel, multi-task learning network based on U-Net for ore image segmentation. To solve the problem of limited available training datasets and to improve the feature extraction ability of the model, an improved encoder based on Resnet18 is proposed. Different from the original U-Net, our model decoder includes a boundary subnetwork for boundary detection and a mask subnetwork for mask segmentation, and information of the two subnetworks is fused in a boundary mask fusion block (BMFB). The experimental results showed that the pixel accuracy, Intersection over Union (IOU) for the ore mask (IOU_M), IOU for the ore boundary (IOU_B), and error of the average statistical ore particle size (ASE) rate of our proposed model on the testing dataset were 92.07%, 86.95%, 52.32%, and 20.38%, respectively. Compared to the benchmark U-Net, the improvements were 0.65%, 1.01%, 5.78%, and 12.11% (down), respectively.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s21082615
- https://www.mdpi.com/1424-8220/21/8/2615/pdf?version=1617941487
- OA Status
- gold
- Cited By
- 45
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3142084776
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3142084776Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s21082615Digital Object Identifier
- Title
-
An Improved Boundary-Aware U-Net for Ore Image Semantic SegmentationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-04-08Full publication date if available
- Authors
-
Wei Wang, Qing Li, Chengyong Xiao, Dezheng Zhang, Lei Miao, Lijun WangList of authors in order
- Landing page
-
https://doi.org/10.3390/s21082615Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/21/8/2615/pdf?version=1617941487Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/21/8/2615/pdf?version=1617941487Direct OA link when available
- Concepts
-
Boundary (topology), Artificial intelligence, Segmentation, Benchmark (surveying), Computer science, Pixel, Subnetwork, Image segmentation, Pattern recognition (psychology), Computer vision, Mathematics, Geology, Geodesy, Computer security, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
45Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 8, 2023: 18, 2022: 8, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3142084776 |
|---|---|
| doi | https://doi.org/10.3390/s21082615 |
| ids.doi | https://doi.org/10.3390/s21082615 |
| ids.mag | 3142084776 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/33917873 |
| ids.openalex | https://openalex.org/W3142084776 |
| fwci | 4.33701089 |
| type | article |
| title | An Improved Boundary-Aware U-Net for Ore Image Semantic Segmentation |
| biblio.issue | 8 |
| biblio.volume | 21 |
| biblio.last_page | 2615 |
| biblio.first_page | 2615 |
| topics[0].id | https://openalex.org/T12282 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Mineral Processing and Grinding |
| topics[1].id | https://openalex.org/T12874 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9818999767303467 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Digital Imaging for Blood Diseases |
| topics[2].id | https://openalex.org/T10161 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.968999981880188 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2211 |
| topics[2].subfield.display_name | Mechanics of Materials |
| topics[2].display_name | Rock Mechanics and Modeling |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C62354387 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6071041822433472 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q875399 |
| concepts[0].display_name | Boundary (topology) |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5927996635437012 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C89600930 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5908029675483704 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[2].display_name | Segmentation |
| concepts[3].id | https://openalex.org/C185798385 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5633350014686584 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[3].display_name | Benchmark (surveying) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.553220808506012 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C160633673 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5197329521179199 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[5].display_name | Pixel |
| concepts[6].id | https://openalex.org/C2780186347 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5195196270942688 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11414 |
| concepts[6].display_name | Subnetwork |
| concepts[7].id | https://openalex.org/C124504099 |
| concepts[7].level | 3 |
| concepts[7].score | 0.45358872413635254 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[7].display_name | Image segmentation |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4358452558517456 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.36171698570251465 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2113339602947235 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C127313418 |
| concepts[11].level | 0 |
| concepts[11].score | 0.18141400814056396 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[11].display_name | Geology |
| concepts[12].id | https://openalex.org/C13280743 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[12].display_name | Geodesy |
| concepts[13].id | https://openalex.org/C38652104 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[13].display_name | Computer security |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/boundary |
| keywords[0].score | 0.6071041822433472 |
| keywords[0].display_name | Boundary (topology) |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5927996635437012 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/segmentation |
| keywords[2].score | 0.5908029675483704 |
| keywords[2].display_name | Segmentation |
| keywords[3].id | https://openalex.org/keywords/benchmark |
| keywords[3].score | 0.5633350014686584 |
| keywords[3].display_name | Benchmark (surveying) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.553220808506012 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/pixel |
| keywords[5].score | 0.5197329521179199 |
| keywords[5].display_name | Pixel |
| keywords[6].id | https://openalex.org/keywords/subnetwork |
| keywords[6].score | 0.5195196270942688 |
| keywords[6].display_name | Subnetwork |
| keywords[7].id | https://openalex.org/keywords/image-segmentation |
| keywords[7].score | 0.45358872413635254 |
| keywords[7].display_name | Image segmentation |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.4358452558517456 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.36171698570251465 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.2113339602947235 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/geology |
| keywords[11].score | 0.18141400814056396 |
| keywords[11].display_name | Geology |
| language | en |
| locations[0].id | doi:10.3390/s21082615 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/21/8/2615/pdf?version=1617941487 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s21082615 |
| locations[1].id | pmid:33917873 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/33917873 |
| locations[2].id | pmh:oai:doaj.org/article:7ab7211d8b1b44f3830e64a4817172cb |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 21, Iss 8, p 2615 (2021) |
| locations[2].landing_page_url | https://doaj.org/article/7ab7211d8b1b44f3830e64a4817172cb |
| locations[3].id | pmh:oai:mdpi.com:/1424-8220/21/8/2615/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors; Volume 21; Issue 8; Pages: 2615 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/s21082615 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:8068300 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8068300 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100391803 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9360-2745 |
| authorships[0].author.display_name | Wei Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I92403157 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I92403157 |
| authorships[0].affiliations[1].raw_affiliation_string | Key Laboratory of Knowledge Automation for Industrial Processes, University of Science and Technology Beijing, Ministry of Education, Beijing 100083, China |
| authorships[0].institutions[0].id | https://openalex.org/I92403157 |
| authorships[0].institutions[0].ror | https://ror.org/02egmk993 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I92403157 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | University of Science and Technology Beijing |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wei Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Knowledge Automation for Industrial Processes, University of Science and Technology Beijing, Ministry of Education, Beijing 100083, China, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China |
| authorships[1].author.id | https://openalex.org/A5100703199 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6361-5008 |
| authorships[1].author.display_name | Qing Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I92403157 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I92403157 |
| authorships[1].affiliations[1].raw_affiliation_string | Key Laboratory of Knowledge Automation for Industrial Processes, University of Science and Technology Beijing, Ministry of Education, Beijing 100083, China |
| authorships[1].institutions[0].id | https://openalex.org/I92403157 |
| authorships[1].institutions[0].ror | https://ror.org/02egmk993 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I92403157 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | University of Science and Technology Beijing |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qing Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Key Laboratory of Knowledge Automation for Industrial Processes, University of Science and Technology Beijing, Ministry of Education, Beijing 100083, China, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China |
| authorships[2].author.id | https://openalex.org/A5064653166 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Chengyong Xiao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I92403157 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China |
| authorships[2].institutions[0].id | https://openalex.org/I92403157 |
| authorships[2].institutions[0].ror | https://ror.org/02egmk993 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I92403157 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | University of Science and Technology Beijing |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chengyong Xiao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China |
| authorships[3].author.id | https://openalex.org/A5024869142 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3456-5259 |
| authorships[3].author.display_name | Dezheng Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I92403157 |
| authorships[3].affiliations[0].raw_affiliation_string | Beijing Key Laboratory of Knowledge Engineering for Materials Science, University of Science and Technology Beijing, Beijing 100083, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I92403157 |
| authorships[3].affiliations[1].raw_affiliation_string | School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China |
| authorships[3].institutions[0].id | https://openalex.org/I92403157 |
| authorships[3].institutions[0].ror | https://ror.org/02egmk993 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I92403157 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | University of Science and Technology Beijing |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Dezheng Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Beijing Key Laboratory of Knowledge Engineering for Materials Science, University of Science and Technology Beijing, Beijing 100083, China, School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China |
| authorships[4].author.id | https://openalex.org/A5104046234 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Lei Miao |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I92403157 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I92403157 |
| authorships[4].affiliations[1].raw_affiliation_string | Key Laboratory of Knowledge Automation for Industrial Processes, University of Science and Technology Beijing, Ministry of Education, Beijing 100083, China |
| authorships[4].institutions[0].id | https://openalex.org/I92403157 |
| authorships[4].institutions[0].ror | https://ror.org/02egmk993 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I92403157 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | University of Science and Technology Beijing |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lei Miao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Key Laboratory of Knowledge Automation for Industrial Processes, University of Science and Technology Beijing, Ministry of Education, Beijing 100083, China, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China |
| authorships[5].author.id | https://openalex.org/A5085760988 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2094-3228 |
| authorships[5].author.display_name | Lijun Wang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I92403157 |
| authorships[5].affiliations[0].raw_affiliation_string | Key Laboratory of Knowledge Automation for Industrial Processes, University of Science and Technology Beijing, Ministry of Education, Beijing 100083, China |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I92403157 |
| authorships[5].affiliations[1].raw_affiliation_string | School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China |
| authorships[5].institutions[0].id | https://openalex.org/I92403157 |
| authorships[5].institutions[0].ror | https://ror.org/02egmk993 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I92403157 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | University of Science and Technology Beijing |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Li Wang |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Key Laboratory of Knowledge Automation for Industrial Processes, University of Science and Technology Beijing, Ministry of Education, Beijing 100083, China, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/21/8/2615/pdf?version=1617941487 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Improved Boundary-Aware U-Net for Ore Image Semantic Segmentation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12282 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Mineral Processing and Grinding |
| related_works | https://openalex.org/W2060724872, https://openalex.org/W2082094785, https://openalex.org/W2202198356, https://openalex.org/W3087203342, https://openalex.org/W2377184161, https://openalex.org/W228984114, https://openalex.org/W4226360758, https://openalex.org/W2151093953, https://openalex.org/W2090026684, https://openalex.org/W1522196789 |
| cited_by_count | 45 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 18 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 8 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s21082615 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/21/8/2615/pdf?version=1617941487 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s21082615 |
| primary_location.id | doi:10.3390/s21082615 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/21/8/2615/pdf?version=1617941487 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s21082615 |
| publication_date | 2021-04-08 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W1964380994, https://openalex.org/W2020659179, https://openalex.org/W2371709351, https://openalex.org/W2789943390, https://openalex.org/W2923476824, https://openalex.org/W7070196343, https://openalex.org/W2163605009, https://openalex.org/W2117539524, https://openalex.org/W1677182931, https://openalex.org/W639708223, https://openalex.org/W1901129140, https://openalex.org/W2560023338, https://openalex.org/W2964309882, https://openalex.org/W2839349325, https://openalex.org/W3010144798, https://openalex.org/W2770180314, https://openalex.org/W6780738628, https://openalex.org/W3108684844, https://openalex.org/W3082945422, https://openalex.org/W2601564443, https://openalex.org/W6781885996, https://openalex.org/W2782757030, https://openalex.org/W6750469568, https://openalex.org/W3112045551, https://openalex.org/W2337735138, https://openalex.org/W2753241065, https://openalex.org/W2892300271, https://openalex.org/W2395611524, https://openalex.org/W6687483927, https://openalex.org/W3128670286, https://openalex.org/W2921092847, https://openalex.org/W3106651317, https://openalex.org/W6631190155, https://openalex.org/W2950477723, https://openalex.org/W3042700290, https://openalex.org/W2194775991, https://openalex.org/W3049161665, https://openalex.org/W2950312193, https://openalex.org/W3045400274, https://openalex.org/W2798122215, https://openalex.org/W2351397417, https://openalex.org/W2787091153 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 88, 94, 116, 164, 171, 186 |
| abstract_inverted_index.In | 109 |
| abstract_inverted_index.To | 128 |
| abstract_inverted_index.an | 33, 147 |
| abstract_inverted_index.be | 87 |
| abstract_inverted_index.in | 185 |
| abstract_inverted_index.is | 2, 32, 77, 106, 153, 183 |
| abstract_inverted_index.it | 76 |
| abstract_inverted_index.of | 12, 17, 26, 40, 48, 53, 57, 93, 132, 144, 179, 217, 226 |
| abstract_inverted_index.on | 66, 122, 151, 230 |
| abstract_inverted_index.to | 7, 36, 79, 111, 138, 242 |
| abstract_inverted_index.we | 114 |
| abstract_inverted_index.IOU | 209 |
| abstract_inverted_index.The | 91, 192 |
| abstract_inverted_index.and | 14, 51, 59, 64, 70, 84, 100, 137, 170, 177, 215, 238, 252 |
| abstract_inverted_index.can | 86 |
| abstract_inverted_index.for | 98, 124, 167, 174, 204, 210 |
| abstract_inverted_index.ore | 29, 68, 81, 104, 125, 206, 212, 221 |
| abstract_inverted_index.our | 160, 227 |
| abstract_inverted_index.the | 3, 9, 15, 23, 38, 46, 49, 55, 61, 67, 72, 130, 140, 145, 157, 180, 197, 205, 211, 218, 231, 243, 246 |
| abstract_inverted_index.two | 181 |
| abstract_inverted_index.also | 107 |
| abstract_inverted_index.belt | 103 |
| abstract_inverted_index.dust | 58 |
| abstract_inverted_index.from | 156 |
| abstract_inverted_index.mask | 172, 175, 188, 207 |
| abstract_inverted_index.most | 4 |
| abstract_inverted_index.over | 201 |
| abstract_inverted_index.rate | 225 |
| abstract_inverted_index.size | 1, 19, 42, 50, 223 |
| abstract_inverted_index.that | 196 |
| abstract_inverted_index.were | 234, 248 |
| abstract_inverted_index.(ASE) | 224 |
| abstract_inverted_index.(IOU) | 203 |
| abstract_inverted_index.U-Net | 123 |
| abstract_inverted_index.Union | 202 |
| abstract_inverted_index.based | 121, 150 |
| abstract_inverted_index.block | 190 |
| abstract_inverted_index.error | 216 |
| abstract_inverted_index.fused | 184 |
| abstract_inverted_index.given | 45 |
| abstract_inverted_index.image | 30, 126 |
| abstract_inverted_index.index | 6 |
| abstract_inverted_index.model | 161, 229 |
| abstract_inverted_index.ores, | 13, 54, 75 |
| abstract_inverted_index.pixel | 198 |
| abstract_inverted_index.shape | 52 |
| abstract_inverted_index.solve | 129 |
| abstract_inverted_index.these | 112 |
| abstract_inverted_index.0.65%, | 249 |
| abstract_inverted_index.1.01%, | 250 |
| abstract_inverted_index.12.11% | 253 |
| abstract_inverted_index.5.78%, | 251 |
| abstract_inverted_index.U-Net, | 159, 245 |
| abstract_inverted_index.ensure | 37 |
| abstract_inverted_index.fusion | 189 |
| abstract_inverted_index.images | 82, 105 |
| abstract_inverted_index.large, | 95 |
| abstract_inverted_index.light, | 60 |
| abstract_inverted_index.mines. | 27 |
| abstract_inverted_index.model, | 146 |
| abstract_inverted_index.novel, | 117 |
| abstract_inverted_index.showed | 195 |
| abstract_inverted_index.(BMFB). | 191 |
| abstract_inverted_index.(down), | 254 |
| abstract_inverted_index.20.38%, | 239 |
| abstract_inverted_index.52.32%, | 237 |
| abstract_inverted_index.86.95%, | 236 |
| abstract_inverted_index.92.07%, | 235 |
| abstract_inverted_index.ability | 143 |
| abstract_inverted_index.affects | 22 |
| abstract_inverted_index.average | 219 |
| abstract_inverted_index.between | 74 |
| abstract_inverted_index.complex | 62, 99 |
| abstract_inverted_index.dataset | 97, 233 |
| abstract_inverted_index.decoder | 162 |
| abstract_inverted_index.encoder | 149 |
| abstract_inverted_index.feature | 141 |
| abstract_inverted_index.improve | 139 |
| abstract_inverted_index.labeled | 96 |
| abstract_inverted_index.limited | 133 |
| abstract_inverted_index.network | 120 |
| abstract_inverted_index.problem | 131 |
| abstract_inverted_index.propose | 115 |
| abstract_inverted_index.quality | 11 |
| abstract_inverted_index.reflect | 8 |
| abstract_inverted_index.results | 194 |
| abstract_inverted_index.segment | 80 |
| abstract_inverted_index.serious | 89 |
| abstract_inverted_index.shadows | 65 |
| abstract_inverted_index.testing | 232 |
| abstract_inverted_index.texture | 63 |
| abstract_inverted_index.unclear | 101 |
| abstract_inverted_index.(IOU_B), | 214 |
| abstract_inverted_index.(IOU_M), | 208 |
| abstract_inverted_index.Accurate | 28 |
| abstract_inverted_index.Compared | 241 |
| abstract_inverted_index.However, | 44 |
| abstract_inverted_index.Particle | 0 |
| abstract_inverted_index.Resnet18 | 152 |
| abstract_inverted_index.accuracy | 16 |
| abstract_inverted_index.adhesion | 73 |
| abstract_inverted_index.boundary | 165, 168, 187, 213 |
| abstract_inverted_index.conveyor | 102 |
| abstract_inverted_index.crushing | 10 |
| abstract_inverted_index.datasets | 136 |
| abstract_inverted_index.directly | 21 |
| abstract_inverted_index.improved | 148 |
| abstract_inverted_index.includes | 163 |
| abstract_inverted_index.learning | 119 |
| abstract_inverted_index.original | 158 |
| abstract_inverted_index.particle | 18, 41, 222 |
| abstract_inverted_index.problem. | 90 |
| abstract_inverted_index.proposed | 228 |
| abstract_inverted_index.response | 110 |
| abstract_inverted_index.surface, | 69 |
| abstract_inverted_index.training | 135 |
| abstract_inverted_index.Different | 155 |
| abstract_inverted_index.accuracy, | 199 |
| abstract_inverted_index.available | 134 |
| abstract_inverted_index.benchmark | 244 |
| abstract_inverted_index.detection | 169 |
| abstract_inverted_index.difficult | 78 |
| abstract_inverted_index.diversity | 47 |
| abstract_inverted_index.important | 5, 34 |
| abstract_inverted_index.influence | 56 |
| abstract_inverted_index.operation | 25 |
| abstract_inverted_index.proposed. | 154 |
| abstract_inverted_index.difficult. | 108 |
| abstract_inverted_index.especially | 71 |
| abstract_inverted_index.extraction | 142 |
| abstract_inverted_index.multi-task | 118 |
| abstract_inverted_index.statistics | 20 |
| abstract_inverted_index.subnetwork | 166, 173 |
| abstract_inverted_index.subsequent | 24 |
| abstract_inverted_index.accurately, | 83 |
| abstract_inverted_index.challenges, | 113 |
| abstract_inverted_index.information | 178 |
| abstract_inverted_index.reliability | 39 |
| abstract_inverted_index.statistical | 220 |
| abstract_inverted_index.statistics. | 43 |
| abstract_inverted_index.subnetworks | 182 |
| abstract_inverted_index.Intersection | 200 |
| abstract_inverted_index.construction | 92 |
| abstract_inverted_index.experimental | 193 |
| abstract_inverted_index.improvements | 247 |
| abstract_inverted_index.prerequisite | 35 |
| abstract_inverted_index.segmentation | 31 |
| abstract_inverted_index.respectively. | 240, 255 |
| abstract_inverted_index.segmentation, | 176 |
| abstract_inverted_index.segmentation. | 127 |
| abstract_inverted_index.under-segmentation | 85 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5085760988 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I92403157 |
| citation_normalized_percentile.value | 0.94805084 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |