An Improved Ensemble Method With Data Resampling for Credit Risk Prediction Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3563432
The increasing complexity and dynamic nature of financial data present significant challenges in accurately predicting credit risk, a critical task in the banking and finance sector. The application of machine learning (ML) in credit risk prediction has been hindered by the imbalanced nature of credit datasets. This study proposes an improved approach for predicting credit risk using a stacked ensemble method combined with a hybrid data resampling technique. The ensemble comprises random forests, logistic regression, and a convolutional neural network (CNN) as base learners, with the multilayer perceptron (MLP) serving as a meta-learner. To address the data imbalance, the Synthetic Minority Over-sampling Technique and Edited Nearest Neighbors (SMOTE-ENN) technique were applied. The proposed approach is benchmarked against other well-performing classifiers, including random forest, logistic regression, MLP, and CNN. The integration of hybrid data resampling with a robust stacking ensemble significantly enhanced credit risk prediction, with the proposed approach achieving sensitivity and specificity of 0.921 and 0.946 for the Australian dataset and 0.928 and 0.891 for the German dataset. Also, the stacked classifier achieved a sensitivity and specificity of 0.000 and 1.000 before data resampling for the Credit Risk Classification dataset with an accuracy of 0.7644. After data resampling, the accuracy, sensitivity, and specificity are 0.8056, 0.7989 and 0.8125, respectively. On the other hand, using the credit risk analysis for the extended banking loans dataset, the accuracy, sensitivity and specificity of the stacked classifier before data resampling are 0.8429, 0.6316, and 0.9216, respectively. After data resampling, the accuracy, sensitivity and specificity scores of the stacked classifier trained using the credit risk analysis for the extended banking loans dataset are 0.9632, 1.0000, and 0.9242, respectively. This shows that after data resampling, the performance of the stacked classifier trained using the credit risk analysis for the extended banking loans dataset outperformed other models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3563432
- OA Status
- gold
- Cited By
- 2
- References
- 65
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409744617
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409744617Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3563432Digital Object Identifier
- Title
-
An Improved Ensemble Method With Data Resampling for Credit Risk PredictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Idowu Aruleba, Yanxia SunList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3563432Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3563432Direct OA link when available
- Concepts
-
Computer science, Resampling, Data mining, Machine learning, Artificial intelligence, Econometrics, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
65Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409744617 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3563432 |
| ids.doi | https://doi.org/10.1109/access.2025.3563432 |
| ids.openalex | https://openalex.org/W4409744617 |
| fwci | 16.96769478 |
| type | article |
| title | An Improved Ensemble Method With Data Resampling for Credit Risk Prediction |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 71287 |
| biblio.first_page | 71275 |
| topics[0].id | https://openalex.org/T11653 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.9121999740600586 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1402 |
| topics[0].subfield.display_name | Accounting |
| topics[0].display_name | Financial Distress and Bankruptcy Prediction |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6523000001907349 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C150921843 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6123744249343872 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1170431 |
| concepts[1].display_name | Resampling |
| concepts[2].id | https://openalex.org/C124101348 |
| concepts[2].level | 1 |
| concepts[2].score | 0.43117037415504456 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[2].display_name | Data mining |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.416443407535553 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.38808298110961914 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C149782125 |
| concepts[5].level | 1 |
| concepts[5].score | 0.32480424642562866 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[5].display_name | Econometrics |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.1148938536643982 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6523000001907349 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/resampling |
| keywords[1].score | 0.6123744249343872 |
| keywords[1].display_name | Resampling |
| keywords[2].id | https://openalex.org/keywords/data-mining |
| keywords[2].score | 0.43117037415504456 |
| keywords[2].display_name | Data mining |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.416443407535553 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.38808298110961914 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/econometrics |
| keywords[5].score | 0.32480424642562866 |
| keywords[5].display_name | Econometrics |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.1148938536643982 |
| keywords[6].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3563432 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3563432 |
| locations[1].id | pmh:oai:doaj.org/article:f83dd0874c6f4ea0b569e4a2ff93c646 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 71275-71287 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/f83dd0874c6f4ea0b569e4a2ff93c646 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5005433914 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9167-0779 |
| authorships[0].author.display_name | Idowu Aruleba |
| authorships[0].countries | ZA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I24027795 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg, South Africa |
| authorships[0].institutions[0].id | https://openalex.org/I24027795 |
| authorships[0].institutions[0].ror | https://ror.org/04z6c2n17 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I24027795 |
| authorships[0].institutions[0].country_code | ZA |
| authorships[0].institutions[0].display_name | University of Johannesburg |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Idowu Aruleba |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg, South Africa |
| authorships[1].author.id | https://openalex.org/A5091303313 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3455-9625 |
| authorships[1].author.display_name | Yanxia Sun |
| authorships[1].countries | ZA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I24027795 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg, South Africa |
| authorships[1].institutions[0].id | https://openalex.org/I24027795 |
| authorships[1].institutions[0].ror | https://ror.org/04z6c2n17 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I24027795 |
| authorships[1].institutions[0].country_code | ZA |
| authorships[1].institutions[0].display_name | University of Johannesburg |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Yanxia Sun |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg, South Africa |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3563432 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Improved Ensemble Method With Data Resampling for Credit Risk Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11653 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.9121999740600586 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1402 |
| primary_topic.subfield.display_name | Accounting |
| primary_topic.display_name | Financial Distress and Bankruptcy Prediction |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3008199583, https://openalex.org/W4387369504, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2025.3563432 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3563432 |
| primary_location.id | doi:10.1109/access.2025.3563432 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3563432 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4401633972, https://openalex.org/W4220910797, https://openalex.org/W2923437336, https://openalex.org/W4388479699, https://openalex.org/W4390581705, https://openalex.org/W3178167829, https://openalex.org/W4390401711, https://openalex.org/W4362558532, https://openalex.org/W4388451421, https://openalex.org/W3034563984, https://openalex.org/W4304690977, https://openalex.org/W4392232728, https://openalex.org/W3090335068, https://openalex.org/W3104873923, https://openalex.org/W2954214015, https://openalex.org/W4220916703, https://openalex.org/W3096019139, https://openalex.org/W4389058774, https://openalex.org/W4322746787, https://openalex.org/W4399800820, https://openalex.org/W3216475965, https://openalex.org/W4391436932, https://openalex.org/W4392358344, https://openalex.org/W4388210314, https://openalex.org/W4400524829, https://openalex.org/W3183082635, https://openalex.org/W4396529039, https://openalex.org/W4390049924, https://openalex.org/W4322754167, https://openalex.org/W4390805998, https://openalex.org/W4206330621, https://openalex.org/W4385999896, https://openalex.org/W4391382092, https://openalex.org/W4394564350, https://openalex.org/W2970989889, https://openalex.org/W3039307496, https://openalex.org/W3045991306, https://openalex.org/W3136321522, https://openalex.org/W2216946510, https://openalex.org/W4296079469, https://openalex.org/W4386648688, https://openalex.org/W4381682414, https://openalex.org/W2910121883, https://openalex.org/W4385342469, https://openalex.org/W4362608104, https://openalex.org/W4361275400, https://openalex.org/W2752517284, https://openalex.org/W2610332124, https://openalex.org/W1767699817, https://openalex.org/W2160220161, https://openalex.org/W3106717751, https://openalex.org/W4311350769, https://openalex.org/W4401889742, https://openalex.org/W3090418931, https://openalex.org/W2793660455, https://openalex.org/W4282977196, https://openalex.org/W6850648276, https://openalex.org/W2943917172, https://openalex.org/W2056221673, https://openalex.org/W3138423578, https://openalex.org/W3148119887, https://openalex.org/W3203259065, https://openalex.org/W4210242534, https://openalex.org/W3174530348, https://openalex.org/W4320481151 |
| referenced_works_count | 65 |
| abstract_inverted_index.a | 17, 57, 63, 76, 91, 135, 173 |
| abstract_inverted_index.On | 209 |
| abstract_inverted_index.To | 93 |
| abstract_inverted_index.an | 49, 191 |
| abstract_inverted_index.as | 81, 90 |
| abstract_inverted_index.by | 39 |
| abstract_inverted_index.in | 12, 20, 32 |
| abstract_inverted_index.is | 114 |
| abstract_inverted_index.of | 6, 28, 43, 130, 152, 177, 193, 229, 251, 281 |
| abstract_inverted_index.The | 0, 26, 68, 111, 128 |
| abstract_inverted_index.and | 3, 23, 75, 103, 126, 150, 154, 160, 162, 175, 179, 201, 206, 227, 239, 248, 270 |
| abstract_inverted_index.are | 203, 236, 267 |
| abstract_inverted_index.for | 52, 156, 164, 184, 218, 261, 291 |
| abstract_inverted_index.has | 36 |
| abstract_inverted_index.the | 21, 40, 85, 95, 98, 145, 157, 165, 169, 185, 198, 210, 214, 219, 224, 230, 245, 252, 257, 262, 279, 282, 287, 292 |
| abstract_inverted_index.(ML) | 31 |
| abstract_inverted_index.CNN. | 127 |
| abstract_inverted_index.MLP, | 125 |
| abstract_inverted_index.Risk | 187 |
| abstract_inverted_index.This | 46, 273 |
| abstract_inverted_index.base | 82 |
| abstract_inverted_index.been | 37 |
| abstract_inverted_index.data | 8, 65, 96, 132, 182, 196, 234, 243, 277 |
| abstract_inverted_index.risk | 34, 55, 142, 216, 259, 289 |
| abstract_inverted_index.task | 19 |
| abstract_inverted_index.that | 275 |
| abstract_inverted_index.were | 109 |
| abstract_inverted_index.with | 62, 84, 134, 144, 190 |
| abstract_inverted_index.(CNN) | 80 |
| abstract_inverted_index.(MLP) | 88 |
| abstract_inverted_index.0.000 | 178 |
| abstract_inverted_index.0.891 | 163 |
| abstract_inverted_index.0.921 | 153 |
| abstract_inverted_index.0.928 | 161 |
| abstract_inverted_index.0.946 | 155 |
| abstract_inverted_index.1.000 | 180 |
| abstract_inverted_index.After | 195, 242 |
| abstract_inverted_index.Also, | 168 |
| abstract_inverted_index.after | 276 |
| abstract_inverted_index.hand, | 212 |
| abstract_inverted_index.loans | 222, 265, 295 |
| abstract_inverted_index.other | 117, 211, 298 |
| abstract_inverted_index.risk, | 16 |
| abstract_inverted_index.shows | 274 |
| abstract_inverted_index.study | 47 |
| abstract_inverted_index.using | 56, 213, 256, 286 |
| abstract_inverted_index.0.7989 | 205 |
| abstract_inverted_index.Credit | 186 |
| abstract_inverted_index.Edited | 104 |
| abstract_inverted_index.German | 166 |
| abstract_inverted_index.before | 181, 233 |
| abstract_inverted_index.credit | 15, 33, 44, 54, 141, 215, 258, 288 |
| abstract_inverted_index.hybrid | 64, 131 |
| abstract_inverted_index.method | 60 |
| abstract_inverted_index.nature | 5, 42 |
| abstract_inverted_index.neural | 78 |
| abstract_inverted_index.random | 71, 121 |
| abstract_inverted_index.robust | 136 |
| abstract_inverted_index.scores | 250 |
| abstract_inverted_index.0.6316, | 238 |
| abstract_inverted_index.0.7644. | 194 |
| abstract_inverted_index.0.8056, | 204 |
| abstract_inverted_index.0.8125, | 207 |
| abstract_inverted_index.0.8429, | 237 |
| abstract_inverted_index.0.9216, | 240 |
| abstract_inverted_index.0.9242, | 271 |
| abstract_inverted_index.0.9632, | 268 |
| abstract_inverted_index.1.0000, | 269 |
| abstract_inverted_index.Nearest | 105 |
| abstract_inverted_index.address | 94 |
| abstract_inverted_index.against | 116 |
| abstract_inverted_index.banking | 22, 221, 264, 294 |
| abstract_inverted_index.dataset | 159, 189, 266, 296 |
| abstract_inverted_index.dynamic | 4 |
| abstract_inverted_index.finance | 24 |
| abstract_inverted_index.forest, | 122 |
| abstract_inverted_index.machine | 29 |
| abstract_inverted_index.models. | 299 |
| abstract_inverted_index.network | 79 |
| abstract_inverted_index.present | 9 |
| abstract_inverted_index.sector. | 25 |
| abstract_inverted_index.serving | 89 |
| abstract_inverted_index.stacked | 58, 170, 231, 253, 283 |
| abstract_inverted_index.trained | 255, 285 |
| abstract_inverted_index.Minority | 100 |
| abstract_inverted_index.accuracy | 192 |
| abstract_inverted_index.achieved | 172 |
| abstract_inverted_index.analysis | 217, 260, 290 |
| abstract_inverted_index.applied. | 110 |
| abstract_inverted_index.approach | 51, 113, 147 |
| abstract_inverted_index.combined | 61 |
| abstract_inverted_index.critical | 18 |
| abstract_inverted_index.dataset, | 223 |
| abstract_inverted_index.dataset. | 167 |
| abstract_inverted_index.enhanced | 140 |
| abstract_inverted_index.ensemble | 59, 69, 138 |
| abstract_inverted_index.extended | 220, 263, 293 |
| abstract_inverted_index.forests, | 72 |
| abstract_inverted_index.hindered | 38 |
| abstract_inverted_index.improved | 50 |
| abstract_inverted_index.learning | 30 |
| abstract_inverted_index.logistic | 73, 123 |
| abstract_inverted_index.proposed | 112, 146 |
| abstract_inverted_index.proposes | 48 |
| abstract_inverted_index.stacking | 137 |
| abstract_inverted_index.Neighbors | 106 |
| abstract_inverted_index.Synthetic | 99 |
| abstract_inverted_index.Technique | 102 |
| abstract_inverted_index.accuracy, | 199, 225, 246 |
| abstract_inverted_index.achieving | 148 |
| abstract_inverted_index.comprises | 70 |
| abstract_inverted_index.datasets. | 45 |
| abstract_inverted_index.financial | 7 |
| abstract_inverted_index.including | 120 |
| abstract_inverted_index.learners, | 83 |
| abstract_inverted_index.technique | 108 |
| abstract_inverted_index.Australian | 158 |
| abstract_inverted_index.accurately | 13 |
| abstract_inverted_index.challenges | 11 |
| abstract_inverted_index.classifier | 171, 232, 254, 284 |
| abstract_inverted_index.complexity | 2 |
| abstract_inverted_index.imbalance, | 97 |
| abstract_inverted_index.imbalanced | 41 |
| abstract_inverted_index.increasing | 1 |
| abstract_inverted_index.multilayer | 86 |
| abstract_inverted_index.perceptron | 87 |
| abstract_inverted_index.predicting | 14, 53 |
| abstract_inverted_index.prediction | 35 |
| abstract_inverted_index.resampling | 66, 133, 183, 235 |
| abstract_inverted_index.technique. | 67 |
| abstract_inverted_index.(SMOTE-ENN) | 107 |
| abstract_inverted_index.application | 27 |
| abstract_inverted_index.benchmarked | 115 |
| abstract_inverted_index.integration | 129 |
| abstract_inverted_index.performance | 280 |
| abstract_inverted_index.prediction, | 143 |
| abstract_inverted_index.regression, | 74, 124 |
| abstract_inverted_index.resampling, | 197, 244, 278 |
| abstract_inverted_index.sensitivity | 149, 174, 226, 247 |
| abstract_inverted_index.significant | 10 |
| abstract_inverted_index.specificity | 151, 176, 202, 228, 249 |
| abstract_inverted_index.classifiers, | 119 |
| abstract_inverted_index.outperformed | 297 |
| abstract_inverted_index.sensitivity, | 200 |
| abstract_inverted_index.Over-sampling | 101 |
| abstract_inverted_index.convolutional | 77 |
| abstract_inverted_index.meta-learner. | 92 |
| abstract_inverted_index.respectively. | 208, 241, 272 |
| abstract_inverted_index.significantly | 139 |
| abstract_inverted_index.Classification | 188 |
| abstract_inverted_index.well-performing | 118 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.97654371 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |