An Improved Lightweight Model for Protected Wildlife Detection in Camera Trap Images Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/s25237331
Effective monitoring of protected wildlife is crucial for biodiversity conservation. While camera traps provide valuable data for ecological observation, existing deep learning models often suffer from low accuracy in detecting rare species and high computational costs, hindering their deployment on edge devices. To address these challenges, this study proposes YOLO11-APS, an improved lightweight model for protected wildlife detection. It enhances the YOLO11n by integrating the self-Attention and Convolution (ACmix) module, the Partial Convolution (PConv) module, and the SlimNeck paradigm. These improvements strengthen feature extraction under complex conditions while reducing computational costs. Experimental results demonstrate that YOLO11-APS achieves superior detection performance compared to the baseline model, attaining a precision of 92.7%, a recall of 87.0%, an [email protected] of 92.6% and an [email protected]:0.95 of 62.2%. In terms of model lightweighting, YOLO11-APS reduces the number of parameters, floating-point operations, and model size by 10.1%, 11.1%, and 9.5%, respectively. YOLO11-APS achieves an optimal balance between accuracy and model complexity, outperforming existing mainstream lightweight detection models. Furthermore, tests on unseen wildlife data confirm its strong transferability and robustness. This work provides an efficient deep learning tool for automated wildlife monitoring in protected areas, facilitating the development of intelligent ecological sensing systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s25237331
- OA Status
- gold
- References
- 50
- OpenAlex ID
- https://openalex.org/W4417055021
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417055021Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s25237331Digital Object Identifier
- Title
-
An Improved Lightweight Model for Protected Wildlife Detection in Camera Trap ImagesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-02Full publication date if available
- Authors
-
Zhaoli Du, Dasheng Wu, Qingqing Wen, Fangsen Xu, Zhongbin Liu, Cheng LiList of authors in order
- Landing page
-
https://doi.org/10.3390/s25237331Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/s25237331Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
50Number of works referenced by this work
Full payload
| id | https://openalex.org/W4417055021 |
|---|---|
| doi | https://doi.org/10.3390/s25237331 |
| ids.doi | https://doi.org/10.3390/s25237331 |
| ids.openalex | https://openalex.org/W4417055021 |
| fwci | |
| type | article |
| title | An Improved Lightweight Model for Protected Wildlife Detection in Camera Trap Images |
| biblio.issue | 23 |
| biblio.volume | 25 |
| biblio.last_page | 7331 |
| biblio.first_page | 7331 |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| language | en |
| locations[0].id | doi:10.3390/s25237331 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s25237331 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5111001201 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-7956-2730 |
| authorships[0].author.display_name | Zhaoli Du |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1284762954 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210134523 |
| authorships[0].affiliations[1].raw_affiliation_string | Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China |
| authorships[0].affiliations[2].raw_affiliation_string | Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210134523 |
| authorships[0].institutions[0].ror | https://ror.org/03f2n3n81 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210134523 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | State Forestry and Grassland Administration |
| authorships[0].institutions[1].id | https://openalex.org/I1284762954 |
| authorships[0].institutions[1].ror | https://ror.org/02vj4rn06 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I1284762954 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Zhejiang A & F University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zengjie Du |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China, Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China |
| authorships[1].author.id | https://openalex.org/A5033636430 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6316-303X |
| authorships[1].author.display_name | Dasheng Wu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1284762954 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210134523 |
| authorships[1].affiliations[1].raw_affiliation_string | Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China |
| authorships[1].affiliations[2].raw_affiliation_string | Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210134523 |
| authorships[1].institutions[0].ror | https://ror.org/03f2n3n81 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210134523 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | State Forestry and Grassland Administration |
| authorships[1].institutions[1].id | https://openalex.org/I1284762954 |
| authorships[1].institutions[1].ror | https://ror.org/02vj4rn06 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I1284762954 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Zhejiang A & F University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dasheng Wu |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China, Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China |
| authorships[2].author.id | https://openalex.org/A5085989615 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Qingqing Wen |
| authorships[2].affiliations[0].raw_affiliation_string | Wucheng Nanshan Provincial Nature Reserve Management Center of Zhejiang Province, Jinhua 321000, China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qingqing Wen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Wucheng Nanshan Provincial Nature Reserve Management Center of Zhejiang Province, Jinhua 321000, China |
| authorships[3].author.id | https://openalex.org/A5103058463 |
| authorships[3].author.orcid | https://orcid.org/0009-0002-1631-236X |
| authorships[3].author.display_name | Fangsen Xu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1284762954 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China |
| authorships[3].affiliations[1].raw_affiliation_string | Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I4210134523 |
| authorships[3].affiliations[2].raw_affiliation_string | Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210134523 |
| authorships[3].institutions[0].ror | https://ror.org/03f2n3n81 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210134523 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | State Forestry and Grassland Administration |
| authorships[3].institutions[1].id | https://openalex.org/I1284762954 |
| authorships[3].institutions[1].ror | https://ror.org/02vj4rn06 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I1284762954 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Zhejiang A & F University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Fengya Xu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China, Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China |
| authorships[4].author.id | https://openalex.org/A5065099384 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Zhongbin Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].raw_affiliation_string | Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I4210134523 |
| authorships[4].affiliations[1].raw_affiliation_string | Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I1284762954 |
| authorships[4].affiliations[2].raw_affiliation_string | College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210134523 |
| authorships[4].institutions[0].ror | https://ror.org/03f2n3n81 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210134523 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | State Forestry and Grassland Administration |
| authorships[4].institutions[1].id | https://openalex.org/I1284762954 |
| authorships[4].institutions[1].ror | https://ror.org/02vj4rn06 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I1284762954 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Zhejiang A & F University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhongbin Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China, Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China |
| authorships[5].author.id | https://openalex.org/A5048059990 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Cheng Li |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].raw_affiliation_string | Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I1284762954 |
| authorships[5].affiliations[1].raw_affiliation_string | College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China |
| authorships[5].affiliations[2].institution_ids | https://openalex.org/I4210134523 |
| authorships[5].affiliations[2].raw_affiliation_string | Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210134523 |
| authorships[5].institutions[0].ror | https://ror.org/03f2n3n81 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210134523 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | State Forestry and Grassland Administration |
| authorships[5].institutions[1].id | https://openalex.org/I1284762954 |
| authorships[5].institutions[1].ror | https://ror.org/02vj4rn06 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I1284762954 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Zhejiang A & F University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Cheng Li |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China, Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/s25237331 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-05T00:00:00 |
| display_name | An Improved Lightweight Model for Protected Wildlife Detection in Camera Trap Images |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-06T23:10:59.065948 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/s25237331 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s25237331 |
| primary_location.id | doi:10.3390/s25237331 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s25237331 |
| publication_date | 2025-12-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2057438322, https://openalex.org/W4385160394, https://openalex.org/W2498805680, https://openalex.org/W2140452356, https://openalex.org/W3091118971, https://openalex.org/W2055032654, https://openalex.org/W2049409009, https://openalex.org/W2413367505, https://openalex.org/W2769210209, https://openalex.org/W2895082331, https://openalex.org/W2885150722, https://openalex.org/W2883386984, https://openalex.org/W3009074285, https://openalex.org/W2914978454, https://openalex.org/W2501604154, https://openalex.org/W2618530766, https://openalex.org/W2967510521, https://openalex.org/W2990978064, https://openalex.org/W3168355424, https://openalex.org/W3042504595, https://openalex.org/W4302006844, https://openalex.org/W2557728737, https://openalex.org/W4289986171, https://openalex.org/W4280497945, https://openalex.org/W4309279743, https://openalex.org/W2109255472, https://openalex.org/W2963857746, https://openalex.org/W4389439852, https://openalex.org/W4323055189, https://openalex.org/W4387264450, https://openalex.org/W4401815821, https://openalex.org/W4392123792, https://openalex.org/W4226224676, https://openalex.org/W4386047745, https://openalex.org/W4393308750, https://openalex.org/W4312734856, https://openalex.org/W2531409750, https://openalex.org/W2970987838, https://openalex.org/W4377981744, https://openalex.org/W4394596865, https://openalex.org/W4312960790, https://openalex.org/W4390872550, https://openalex.org/W3119205652, https://openalex.org/W3112503277, https://openalex.org/W4400859202, https://openalex.org/W2982536526, https://openalex.org/W4402754006, https://openalex.org/W4401879614, https://openalex.org/W4391550302, https://openalex.org/W2028854964 |
| referenced_works_count | 50 |
| abstract_inverted_index.a | 106, 110 |
| abstract_inverted_index.In | 123 |
| abstract_inverted_index.It | 58 |
| abstract_inverted_index.To | 42 |
| abstract_inverted_index.an | 50, 114, 119, 147, 176 |
| abstract_inverted_index.by | 62, 139 |
| abstract_inverted_index.in | 28, 185 |
| abstract_inverted_index.is | 5 |
| abstract_inverted_index.of | 2, 108, 112, 116, 121, 125, 132, 191 |
| abstract_inverted_index.on | 39, 163 |
| abstract_inverted_index.to | 101 |
| abstract_inverted_index.and | 32, 66, 75, 118, 136, 142, 152, 171 |
| abstract_inverted_index.for | 7, 16, 54, 181 |
| abstract_inverted_index.its | 168 |
| abstract_inverted_index.low | 26 |
| abstract_inverted_index.the | 60, 64, 70, 76, 102, 130, 189 |
| abstract_inverted_index.This | 173 |
| abstract_inverted_index.data | 15, 166 |
| abstract_inverted_index.deep | 20, 178 |
| abstract_inverted_index.edge | 40 |
| abstract_inverted_index.from | 25 |
| abstract_inverted_index.high | 33 |
| abstract_inverted_index.rare | 30 |
| abstract_inverted_index.size | 138 |
| abstract_inverted_index.that | 94 |
| abstract_inverted_index.this | 46 |
| abstract_inverted_index.tool | 180 |
| abstract_inverted_index.work | 174 |
| abstract_inverted_index.9.5%, | 143 |
| abstract_inverted_index.92.6% | 117 |
| abstract_inverted_index.These | 79 |
| abstract_inverted_index.While | 10 |
| abstract_inverted_index.model | 53, 126, 137, 153 |
| abstract_inverted_index.often | 23 |
| abstract_inverted_index.study | 47 |
| abstract_inverted_index.terms | 124 |
| abstract_inverted_index.tests | 162 |
| abstract_inverted_index.their | 37 |
| abstract_inverted_index.these | 44 |
| abstract_inverted_index.traps | 12 |
| abstract_inverted_index.under | 84 |
| abstract_inverted_index.while | 87 |
| abstract_inverted_index.10.1%, | 140 |
| abstract_inverted_index.11.1%, | 141 |
| abstract_inverted_index.62.2%. | 122 |
| abstract_inverted_index.87.0%, | 113 |
| abstract_inverted_index.92.7%, | 109 |
| abstract_inverted_index.areas, | 187 |
| abstract_inverted_index.camera | 11 |
| abstract_inverted_index.costs, | 35 |
| abstract_inverted_index.costs. | 90 |
| abstract_inverted_index.model, | 104 |
| abstract_inverted_index.models | 22 |
| abstract_inverted_index.number | 131 |
| abstract_inverted_index.recall | 111 |
| abstract_inverted_index.strong | 169 |
| abstract_inverted_index.suffer | 24 |
| abstract_inverted_index.unseen | 164 |
| abstract_inverted_index.(ACmix) | 68 |
| abstract_inverted_index.(PConv) | 73 |
| abstract_inverted_index.Partial | 71 |
| abstract_inverted_index.YOLO11n | 61 |
| abstract_inverted_index.address | 43 |
| abstract_inverted_index.balance | 149 |
| abstract_inverted_index.between | 150 |
| abstract_inverted_index.complex | 85 |
| abstract_inverted_index.confirm | 167 |
| abstract_inverted_index.crucial | 6 |
| abstract_inverted_index.feature | 82 |
| [email protected] | 115 |
| abstract_inverted_index.models. | 160 |
| abstract_inverted_index.module, | 69, 74 |
| abstract_inverted_index.optimal | 148 |
| abstract_inverted_index.provide | 13 |
| abstract_inverted_index.reduces | 129 |
| abstract_inverted_index.results | 92 |
| abstract_inverted_index.sensing | 194 |
| abstract_inverted_index.species | 31 |
| abstract_inverted_index.SlimNeck | 77 |
| abstract_inverted_index.accuracy | 27, 151 |
| abstract_inverted_index.achieves | 96, 146 |
| abstract_inverted_index.baseline | 103 |
| abstract_inverted_index.compared | 100 |
| abstract_inverted_index.devices. | 41 |
| abstract_inverted_index.enhances | 59 |
| abstract_inverted_index.existing | 19, 156 |
| abstract_inverted_index.improved | 51 |
| abstract_inverted_index.learning | 21, 179 |
| abstract_inverted_index.proposes | 48 |
| abstract_inverted_index.provides | 175 |
| abstract_inverted_index.reducing | 88 |
| abstract_inverted_index.superior | 97 |
| abstract_inverted_index.systems. | 195 |
| abstract_inverted_index.valuable | 14 |
| abstract_inverted_index.wildlife | 4, 56, 165, 183 |
| abstract_inverted_index.Effective | 0 |
| abstract_inverted_index.attaining | 105 |
| abstract_inverted_index.automated | 182 |
| abstract_inverted_index.detecting | 29 |
| abstract_inverted_index.detection | 98, 159 |
| abstract_inverted_index.efficient | 177 |
| abstract_inverted_index.hindering | 36 |
| abstract_inverted_index.paradigm. | 78 |
| abstract_inverted_index.precision | 107 |
| abstract_inverted_index.protected | 3, 55, 186 |
| abstract_inverted_index.YOLO11-APS | 95, 128, 145 |
| abstract_inverted_index.conditions | 86 |
| abstract_inverted_index.deployment | 38 |
| abstract_inverted_index.detection. | 57 |
| abstract_inverted_index.ecological | 17, 193 |
| abstract_inverted_index.extraction | 83 |
| abstract_inverted_index.mainstream | 157 |
| abstract_inverted_index.monitoring | 1, 184 |
| abstract_inverted_index.strengthen | 81 |
| abstract_inverted_index.Convolution | 67, 72 |
| abstract_inverted_index.YOLO11-APS, | 49 |
| abstract_inverted_index.challenges, | 45 |
| abstract_inverted_index.complexity, | 154 |
| abstract_inverted_index.demonstrate | 93 |
| abstract_inverted_index.development | 190 |
| abstract_inverted_index.integrating | 63 |
| abstract_inverted_index.intelligent | 192 |
| abstract_inverted_index.lightweight | 52, 158 |
| abstract_inverted_index.operations, | 135 |
| abstract_inverted_index.parameters, | 133 |
| abstract_inverted_index.performance | 99 |
| abstract_inverted_index.robustness. | 172 |
| abstract_inverted_index.Experimental | 91 |
| abstract_inverted_index.Furthermore, | 161 |
| abstract_inverted_index.biodiversity | 8 |
| abstract_inverted_index.facilitating | 188 |
| abstract_inverted_index.improvements | 80 |
| [email protected]:0.95 | 120 |
| abstract_inverted_index.observation, | 18 |
| abstract_inverted_index.computational | 34, 89 |
| abstract_inverted_index.conservation. | 9 |
| abstract_inverted_index.outperforming | 155 |
| abstract_inverted_index.respectively. | 144 |
| abstract_inverted_index.floating-point | 134 |
| abstract_inverted_index.self-Attention | 65 |
| abstract_inverted_index.lightweighting, | 127 |
| abstract_inverted_index.transferability | 170 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5033636430 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I1284762954, https://openalex.org/I4210134523 |
| citation_normalized_percentile |