An improved method to detect arrhythmia using ensemble learning-based model in multi lead electrocardiogram (ECG) Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pone.0297551
Arrhythmia is a life-threatening cardiac condition characterized by irregular heart rhythm. Early and accurate detection is crucial for effective treatment. However, single-lead electrocardiogram (ECG) methods have limited sensitivity and specificity. This study propose an improved ensemble learning approach for arrhythmia detection using multi-lead ECG data. Proposed method, based on a boosting algorithm, namely Fine Tuned Boosting (FTBO) model detects multiple arrhythmia classes. For the feature extraction, introduce a new technique that utilizes a sliding window with a window size of 5 R-peaks. This study compared it with other models, including bagging and stacking, and assessed the impact of parameter tuning. Rigorous experiments on the MIT-BIH arrhythmia database focused on Premature Ventricular Contraction (PVC), Atrial Premature Contraction (PAC), and Atrial Fibrillation (AF) have been performed. The results showed that the proposed method achieved high sensitivity, specificity, and accuracy for all three classes of arrhythmia. It accurately detected Atrial Fibrillation (AF) with 100% sensitivity and specificity. For Premature Ventricular Contraction (PVC) detection, it achieved 99% sensitivity and specificity in both leads. Similarly, for Atrial Premature Contraction (PAC) detection, proposed method achieved almost 96% sensitivity and specificity in both leads. The proposed method shows great potential for early arrhythmia detection using multi-lead ECG data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pone.0297551
- https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0297551&type=printable
- OA Status
- gold
- Cited By
- 33
- References
- 73
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394596698
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394596698Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pone.0297551Digital Object Identifier
- Title
-
An improved method to detect arrhythmia using ensemble learning-based model in multi lead electrocardiogram (ECG)Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-09Full publication date if available
- Authors
-
Satria Mandala, Ardian Rizal, Adiwijaya Adiwijaya, Siti Nurmaini, Sabilla Suci Amini, Gabriel Almayda Sudarisman, Yuan Wen Hau, Abdul Hanan AbdullahList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pone.0297551Publisher landing page
- PDF URL
-
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0297551&type=printableDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0297551&type=printableDirect OA link when available
- Concepts
-
Atrial fibrillation, Premature atrial contraction, Cardiac arrhythmia, Electrocardiography, Boosting (machine learning), Cardiology, Internal medicine, Sensitivity (control systems), Artificial intelligence, Pattern recognition (psychology), Computer science, Medicine, Engineering, Electronic engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
33Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 26, 2024: 7Per-year citation counts (last 5 years)
- References (count)
-
73Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394596698 |
|---|---|
| doi | https://doi.org/10.1371/journal.pone.0297551 |
| ids.doi | https://doi.org/10.1371/journal.pone.0297551 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38593145 |
| ids.openalex | https://openalex.org/W4394596698 |
| fwci | 27.34780853 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000175 |
| mesh[1].descriptor_ui | D001281 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | diagnosis |
| mesh[1].descriptor_name | Atrial Fibrillation |
| mesh[2].qualifier_ui | Q000175 |
| mesh[2].descriptor_ui | D018879 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | diagnosis |
| mesh[2].descriptor_name | Ventricular Premature Complexes |
| mesh[3].qualifier_ui | Q000379 |
| mesh[3].descriptor_ui | D004562 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | methods |
| mesh[3].descriptor_name | Electrocardiography |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000465 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Algorithms |
| mesh[5].qualifier_ui | Q000175 |
| mesh[5].descriptor_ui | D018880 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | diagnosis |
| mesh[5].descriptor_name | Atrial Premature Complexes |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000069550 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Machine Learning |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D006801 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Humans |
| mesh[8].qualifier_ui | Q000175 |
| mesh[8].descriptor_ui | D001281 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | diagnosis |
| mesh[8].descriptor_name | Atrial Fibrillation |
| mesh[9].qualifier_ui | Q000175 |
| mesh[9].descriptor_ui | D018879 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | diagnosis |
| mesh[9].descriptor_name | Ventricular Premature Complexes |
| mesh[10].qualifier_ui | Q000379 |
| mesh[10].descriptor_ui | D004562 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | methods |
| mesh[10].descriptor_name | Electrocardiography |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000465 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Algorithms |
| mesh[12].qualifier_ui | Q000175 |
| mesh[12].descriptor_ui | D018880 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | diagnosis |
| mesh[12].descriptor_name | Atrial Premature Complexes |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000069550 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Machine Learning |
| type | article |
| title | An improved method to detect arrhythmia using ensemble learning-based model in multi lead electrocardiogram (ECG) |
| biblio.issue | 4 |
| biblio.volume | 19 |
| biblio.last_page | e0297551 |
| biblio.first_page | e0297551 |
| topics[0].id | https://openalex.org/T11021 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | ECG Monitoring and Analysis |
| topics[1].id | https://openalex.org/T10429 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9958000183105469 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | EEG and Brain-Computer Interfaces |
| topics[2].id | https://openalex.org/T10217 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9901000261306763 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | Cardiac electrophysiology and arrhythmias |
| is_xpac | False |
| apc_list.value | 1805 |
| apc_list.currency | USD |
| apc_list.value_usd | 1805 |
| apc_paid.value | 1805 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1805 |
| concepts[0].id | https://openalex.org/C2779161974 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7205817699432373 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q815819 |
| concepts[0].display_name | Atrial fibrillation |
| concepts[1].id | https://openalex.org/C2777632338 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5815820693969727 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7240236 |
| concepts[1].display_name | Premature atrial contraction |
| concepts[2].id | https://openalex.org/C2988455589 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5369218587875366 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q189331 |
| concepts[2].display_name | Cardiac arrhythmia |
| concepts[3].id | https://openalex.org/C2780040984 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5260443687438965 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q79785 |
| concepts[3].display_name | Electrocardiography |
| concepts[4].id | https://openalex.org/C46686674 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5173139572143555 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[4].display_name | Boosting (machine learning) |
| concepts[5].id | https://openalex.org/C164705383 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5072495341300964 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[5].display_name | Cardiology |
| concepts[6].id | https://openalex.org/C126322002 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4570164978504181 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[6].display_name | Internal medicine |
| concepts[7].id | https://openalex.org/C21200559 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43511962890625 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7451068 |
| concepts[7].display_name | Sensitivity (control systems) |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3915213644504547 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3800562918186188 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.33568722009658813 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.32135310769081116 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.060024410486221313 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C24326235 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q126095 |
| concepts[13].display_name | Electronic engineering |
| keywords[0].id | https://openalex.org/keywords/atrial-fibrillation |
| keywords[0].score | 0.7205817699432373 |
| keywords[0].display_name | Atrial fibrillation |
| keywords[1].id | https://openalex.org/keywords/premature-atrial-contraction |
| keywords[1].score | 0.5815820693969727 |
| keywords[1].display_name | Premature atrial contraction |
| keywords[2].id | https://openalex.org/keywords/cardiac-arrhythmia |
| keywords[2].score | 0.5369218587875366 |
| keywords[2].display_name | Cardiac arrhythmia |
| keywords[3].id | https://openalex.org/keywords/electrocardiography |
| keywords[3].score | 0.5260443687438965 |
| keywords[3].display_name | Electrocardiography |
| keywords[4].id | https://openalex.org/keywords/boosting |
| keywords[4].score | 0.5173139572143555 |
| keywords[4].display_name | Boosting (machine learning) |
| keywords[5].id | https://openalex.org/keywords/cardiology |
| keywords[5].score | 0.5072495341300964 |
| keywords[5].display_name | Cardiology |
| keywords[6].id | https://openalex.org/keywords/internal-medicine |
| keywords[6].score | 0.4570164978504181 |
| keywords[6].display_name | Internal medicine |
| keywords[7].id | https://openalex.org/keywords/sensitivity |
| keywords[7].score | 0.43511962890625 |
| keywords[7].display_name | Sensitivity (control systems) |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.3915213644504547 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.3800562918186188 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.33568722009658813 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.32135310769081116 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.060024410486221313 |
| keywords[12].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1371/journal.pone.0297551 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S202381698 |
| locations[0].source.issn | 1932-6203 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1932-6203 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLoS ONE |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_lineage_names | Public Library of Science |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0297551&type=printable |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS ONE |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pone.0297551 |
| locations[1].id | pmid:38593145 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PloS one |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38593145 |
| locations[2].id | pmh:oai:doaj.org/article:22155ff17c684bcebb528d4242e8f394 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | PLoS ONE, Vol 19, Iss 4, p e0297551 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/22155ff17c684bcebb528d4242e8f394 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11003640 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | PLoS One |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11003640 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5070266538 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Satria Mandala |
| authorships[0].countries | ID |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I862893732 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computing, Telkom University, Bandung, Indonesia |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I862893732 |
| authorships[0].affiliations[1].raw_affiliation_string | Human Centric (HUMIC) Engineering, Telkom University, Bandung, Indonesia |
| authorships[0].institutions[0].id | https://openalex.org/I862893732 |
| authorships[0].institutions[0].ror | https://ror.org/0004wsx81 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I862893732 |
| authorships[0].institutions[0].country_code | ID |
| authorships[0].institutions[0].display_name | Telkom University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Satria Mandala |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Human Centric (HUMIC) Engineering, Telkom University, Bandung, Indonesia, School of Computing, Telkom University, Bandung, Indonesia |
| authorships[1].author.id | https://openalex.org/A5080382760 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9104-5022 |
| authorships[1].author.display_name | Ardian Rizal |
| authorships[1].countries | ID |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I177055848 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia |
| authorships[1].institutions[0].id | https://openalex.org/I177055848 |
| authorships[1].institutions[0].ror | https://ror.org/01wk3d929 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I177055848 |
| authorships[1].institutions[0].country_code | ID |
| authorships[1].institutions[0].display_name | University of Brawijaya |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ardian Rizal |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia |
| authorships[2].author.id | https://openalex.org/A5061473902 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3518-7587 |
| authorships[2].author.display_name | Adiwijaya Adiwijaya |
| authorships[2].countries | ID |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I862893732 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computing, Telkom University, Bandung, Indonesia |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I862893732 |
| authorships[2].affiliations[1].raw_affiliation_string | Human Centric (HUMIC) Engineering, Telkom University, Bandung, Indonesia |
| authorships[2].institutions[0].id | https://openalex.org/I862893732 |
| authorships[2].institutions[0].ror | https://ror.org/0004wsx81 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I862893732 |
| authorships[2].institutions[0].country_code | ID |
| authorships[2].institutions[0].display_name | Telkom University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | None Adiwijaya |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Human Centric (HUMIC) Engineering, Telkom University, Bandung, Indonesia, School of Computing, Telkom University, Bandung, Indonesia |
| authorships[3].author.id | https://openalex.org/A5082623277 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8024-2952 |
| authorships[3].author.display_name | Siti Nurmaini |
| authorships[3].countries | ID |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I271888150 |
| authorships[3].affiliations[0].raw_affiliation_string | Intelligent System Research Group, Universitas Sriwijaya, Palembang, South Sumatra, Indonesia |
| authorships[3].institutions[0].id | https://openalex.org/I271888150 |
| authorships[3].institutions[0].ror | https://ror.org/030bmb197 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I271888150 |
| authorships[3].institutions[0].country_code | ID |
| authorships[3].institutions[0].display_name | Sriwijaya University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Siti Nurmaini |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Intelligent System Research Group, Universitas Sriwijaya, Palembang, South Sumatra, Indonesia |
| authorships[4].author.id | https://openalex.org/A5113060174 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Sabilla Suci Amini |
| authorships[4].countries | ID |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I862893732 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Computing, Telkom University, Bandung, Indonesia |
| authorships[4].institutions[0].id | https://openalex.org/I862893732 |
| authorships[4].institutions[0].ror | https://ror.org/0004wsx81 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I862893732 |
| authorships[4].institutions[0].country_code | ID |
| authorships[4].institutions[0].display_name | Telkom University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sabilla Suci Amini |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | School of Computing, Telkom University, Bandung, Indonesia |
| authorships[5].author.id | https://openalex.org/A5095064329 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Gabriel Almayda Sudarisman |
| authorships[5].countries | ID |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I862893732 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Computing, Telkom University, Bandung, Indonesia |
| authorships[5].institutions[0].id | https://openalex.org/I862893732 |
| authorships[5].institutions[0].ror | https://ror.org/0004wsx81 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I862893732 |
| authorships[5].institutions[0].country_code | ID |
| authorships[5].institutions[0].display_name | Telkom University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Gabriel Almayda Sudarisman |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | School of Computing, Telkom University, Bandung, Indonesia |
| authorships[6].author.id | https://openalex.org/A5112326721 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Yuan Wen Hau |
| authorships[6].countries | MY |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4576418 |
| authorships[6].affiliations[0].raw_affiliation_string | IJN-UTM Cardiovascular Engineering Centre, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia |
| authorships[6].institutions[0].id | https://openalex.org/I4576418 |
| authorships[6].institutions[0].ror | https://ror.org/026w31v75 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I4576418 |
| authorships[6].institutions[0].country_code | MY |
| authorships[6].institutions[0].display_name | University of Technology Malaysia |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Yuan Wen Hau |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | IJN-UTM Cardiovascular Engineering Centre, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia |
| authorships[7].author.id | https://openalex.org/A5051692886 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-4948-9607 |
| authorships[7].author.display_name | Abdul Hanan Abdullah |
| authorships[7].countries | ID, MY |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4576418 |
| authorships[7].affiliations[0].raw_affiliation_string | Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I862893732 |
| authorships[7].affiliations[1].raw_affiliation_string | Human Centric (HUMIC) Engineering, Telkom University, Bandung, Indonesia |
| authorships[7].institutions[0].id | https://openalex.org/I862893732 |
| authorships[7].institutions[0].ror | https://ror.org/0004wsx81 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I862893732 |
| authorships[7].institutions[0].country_code | ID |
| authorships[7].institutions[0].display_name | Telkom University |
| authorships[7].institutions[1].id | https://openalex.org/I4576418 |
| authorships[7].institutions[1].ror | https://ror.org/026w31v75 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I4576418 |
| authorships[7].institutions[1].country_code | MY |
| authorships[7].institutions[1].display_name | University of Technology Malaysia |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Abdul Hanan Abdullah |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia, Human Centric (HUMIC) Engineering, Telkom University, Bandung, Indonesia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0297551&type=printable |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An improved method to detect arrhythmia using ensemble learning-based model in multi lead electrocardiogram (ECG) |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11021 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | ECG Monitoring and Analysis |
| related_works | https://openalex.org/W2125652721, https://openalex.org/W1540371141, https://openalex.org/W4231274751, https://openalex.org/W1549363203, https://openalex.org/W2154063878, https://openalex.org/W2104079392, https://openalex.org/W1940356285, https://openalex.org/W4251317296, https://openalex.org/W2182632415, https://openalex.org/W1505556730 |
| cited_by_count | 33 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 26 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1371/journal.pone.0297551 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S202381698 |
| best_oa_location.source.issn | 1932-6203 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1932-6203 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLoS ONE |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_lineage_names | Public Library of Science |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0297551&type=printable |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS ONE |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pone.0297551 |
| primary_location.id | doi:10.1371/journal.pone.0297551 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S202381698 |
| primary_location.source.issn | 1932-6203 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1932-6203 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLoS ONE |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_lineage_names | Public Library of Science |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0297551&type=printable |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS ONE |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pone.0297551 |
| publication_date | 2024-04-09 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2899299378, https://openalex.org/W3025833090, https://openalex.org/W4387693278, https://openalex.org/W2766004161, https://openalex.org/W2729603194, https://openalex.org/W3120627055, https://openalex.org/W3207186353, https://openalex.org/W3106654658, https://openalex.org/W3008167346, https://openalex.org/W2015887634, https://openalex.org/W2181608983, https://openalex.org/W2078319530, https://openalex.org/W2622380070, https://openalex.org/W2343372084, https://openalex.org/W2901956291, https://openalex.org/W2947046645, https://openalex.org/W3185043298, https://openalex.org/W3213358888, https://openalex.org/W4280577321, https://openalex.org/W2110493322, https://openalex.org/W2772095490, https://openalex.org/W2907615080, https://openalex.org/W2905481768, https://openalex.org/W2883929203, https://openalex.org/W2990275089, https://openalex.org/W2995297514, https://openalex.org/W3018796702, https://openalex.org/W3161870055, https://openalex.org/W3185271498, https://openalex.org/W2415977432, https://openalex.org/W2741246468, https://openalex.org/W3028238502, https://openalex.org/W2999971999, https://openalex.org/W3212232251, https://openalex.org/W2886466686, https://openalex.org/W2917653762, https://openalex.org/W3157039231, https://openalex.org/W2103308415, https://openalex.org/W1994670735, https://openalex.org/W2482102801, https://openalex.org/W2507148354, https://openalex.org/W2095409369, https://openalex.org/W4313201311, https://openalex.org/W4382752264, https://openalex.org/W2406010710, https://openalex.org/W105966500, https://openalex.org/W2128012883, https://openalex.org/W1988183757, https://openalex.org/W29801544, https://openalex.org/W2972073115, https://openalex.org/W1984313570, https://openalex.org/W1968969471, https://openalex.org/W3097509539, https://openalex.org/W4319587048, https://openalex.org/W4322500729, https://openalex.org/W2164050098, https://openalex.org/W2586598727, https://openalex.org/W2162273778, https://openalex.org/W2060879505, https://openalex.org/W1603874271, https://openalex.org/W3091060481, https://openalex.org/W2595749414, https://openalex.org/W4386761523, https://openalex.org/W4387093034, https://openalex.org/W2974479098, https://openalex.org/W3092776813, https://openalex.org/W3141537781, https://openalex.org/W4298079872, https://openalex.org/W3101136263, https://openalex.org/W2913705661, https://openalex.org/W4205836412, https://openalex.org/W3003299879, https://openalex.org/W2068083467 |
| referenced_works_count | 73 |
| abstract_inverted_index.5 | 80 |
| abstract_inverted_index.a | 2, 49, 67, 72, 76 |
| abstract_inverted_index.It | 143 |
| abstract_inverted_index.an | 33 |
| abstract_inverted_index.by | 7 |
| abstract_inverted_index.in | 166, 184 |
| abstract_inverted_index.is | 1, 15 |
| abstract_inverted_index.it | 85, 160 |
| abstract_inverted_index.of | 79, 97, 141 |
| abstract_inverted_index.on | 48, 102, 108 |
| abstract_inverted_index.96% | 180 |
| abstract_inverted_index.99% | 162 |
| abstract_inverted_index.ECG | 43, 199 |
| abstract_inverted_index.For | 62, 154 |
| abstract_inverted_index.The | 124, 187 |
| abstract_inverted_index.all | 138 |
| abstract_inverted_index.and | 12, 28, 91, 93, 117, 135, 152, 164, 182 |
| abstract_inverted_index.for | 17, 38, 137, 170, 193 |
| abstract_inverted_index.new | 68 |
| abstract_inverted_index.the | 63, 95, 103, 128 |
| abstract_inverted_index.(AF) | 120, 148 |
| abstract_inverted_index.100% | 150 |
| abstract_inverted_index.Fine | 53 |
| abstract_inverted_index.This | 30, 82 |
| abstract_inverted_index.been | 122 |
| abstract_inverted_index.both | 167, 185 |
| abstract_inverted_index.have | 25, 121 |
| abstract_inverted_index.high | 132 |
| abstract_inverted_index.size | 78 |
| abstract_inverted_index.that | 70, 127 |
| abstract_inverted_index.with | 75, 86, 149 |
| abstract_inverted_index.(ECG) | 23 |
| abstract_inverted_index.(PAC) | 174 |
| abstract_inverted_index.(PVC) | 158 |
| abstract_inverted_index.Early | 11 |
| abstract_inverted_index.Tuned | 54 |
| abstract_inverted_index.based | 47 |
| abstract_inverted_index.data. | 44, 200 |
| abstract_inverted_index.early | 194 |
| abstract_inverted_index.great | 191 |
| abstract_inverted_index.heart | 9 |
| abstract_inverted_index.model | 57 |
| abstract_inverted_index.other | 87 |
| abstract_inverted_index.shows | 190 |
| abstract_inverted_index.study | 31, 83 |
| abstract_inverted_index.three | 139 |
| abstract_inverted_index.using | 41, 197 |
| abstract_inverted_index.(FTBO) | 56 |
| abstract_inverted_index.(PAC), | 116 |
| abstract_inverted_index.(PVC), | 112 |
| abstract_inverted_index.Atrial | 113, 118, 146, 171 |
| abstract_inverted_index.almost | 179 |
| abstract_inverted_index.impact | 96 |
| abstract_inverted_index.leads. | 168, 186 |
| abstract_inverted_index.method | 130, 177, 189 |
| abstract_inverted_index.namely | 52 |
| abstract_inverted_index.showed | 126 |
| abstract_inverted_index.window | 74, 77 |
| abstract_inverted_index.MIT-BIH | 104 |
| abstract_inverted_index.bagging | 90 |
| abstract_inverted_index.cardiac | 4 |
| abstract_inverted_index.classes | 140 |
| abstract_inverted_index.crucial | 16 |
| abstract_inverted_index.detects | 58 |
| abstract_inverted_index.feature | 64 |
| abstract_inverted_index.focused | 107 |
| abstract_inverted_index.limited | 26 |
| abstract_inverted_index.method, | 46 |
| abstract_inverted_index.methods | 24 |
| abstract_inverted_index.models, | 88 |
| abstract_inverted_index.propose | 32 |
| abstract_inverted_index.results | 125 |
| abstract_inverted_index.rhythm. | 10 |
| abstract_inverted_index.sliding | 73 |
| abstract_inverted_index.tuning. | 99 |
| abstract_inverted_index.Boosting | 55 |
| abstract_inverted_index.However, | 20 |
| abstract_inverted_index.Proposed | 45 |
| abstract_inverted_index.R-peaks. | 81 |
| abstract_inverted_index.Rigorous | 100 |
| abstract_inverted_index.accuracy | 136 |
| abstract_inverted_index.accurate | 13 |
| abstract_inverted_index.achieved | 131, 161, 178 |
| abstract_inverted_index.approach | 37 |
| abstract_inverted_index.assessed | 94 |
| abstract_inverted_index.boosting | 50 |
| abstract_inverted_index.classes. | 61 |
| abstract_inverted_index.compared | 84 |
| abstract_inverted_index.database | 106 |
| abstract_inverted_index.detected | 145 |
| abstract_inverted_index.ensemble | 35 |
| abstract_inverted_index.improved | 34 |
| abstract_inverted_index.learning | 36 |
| abstract_inverted_index.multiple | 59 |
| abstract_inverted_index.proposed | 129, 176, 188 |
| abstract_inverted_index.utilizes | 71 |
| abstract_inverted_index.Premature | 109, 114, 155, 172 |
| abstract_inverted_index.condition | 5 |
| abstract_inverted_index.detection | 14, 40, 196 |
| abstract_inverted_index.effective | 18 |
| abstract_inverted_index.including | 89 |
| abstract_inverted_index.introduce | 66 |
| abstract_inverted_index.irregular | 8 |
| abstract_inverted_index.parameter | 98 |
| abstract_inverted_index.potential | 192 |
| abstract_inverted_index.stacking, | 92 |
| abstract_inverted_index.technique | 69 |
| abstract_inverted_index.Arrhythmia | 0 |
| abstract_inverted_index.Similarly, | 169 |
| abstract_inverted_index.accurately | 144 |
| abstract_inverted_index.algorithm, | 51 |
| abstract_inverted_index.arrhythmia | 39, 60, 105, 195 |
| abstract_inverted_index.detection, | 159, 175 |
| abstract_inverted_index.multi-lead | 42, 198 |
| abstract_inverted_index.performed. | 123 |
| abstract_inverted_index.treatment. | 19 |
| abstract_inverted_index.Contraction | 111, 115, 157, 173 |
| abstract_inverted_index.Ventricular | 110, 156 |
| abstract_inverted_index.arrhythmia. | 142 |
| abstract_inverted_index.experiments | 101 |
| abstract_inverted_index.extraction, | 65 |
| abstract_inverted_index.sensitivity | 27, 151, 163, 181 |
| abstract_inverted_index.single-lead | 21 |
| abstract_inverted_index.specificity | 165, 183 |
| abstract_inverted_index.Fibrillation | 119, 147 |
| abstract_inverted_index.sensitivity, | 133 |
| abstract_inverted_index.specificity, | 134 |
| abstract_inverted_index.specificity. | 29, 153 |
| abstract_inverted_index.characterized | 6 |
| abstract_inverted_index.life-threatening | 3 |
| abstract_inverted_index.electrocardiogram | 22 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5082623277, https://openalex.org/A5070266538, https://openalex.org/A5080382760, https://openalex.org/A5051692886, https://openalex.org/A5061473902, https://openalex.org/A5113060174, https://openalex.org/A5095064329, https://openalex.org/A5112326721 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I177055848, https://openalex.org/I271888150, https://openalex.org/I4576418, https://openalex.org/I862893732 |
| citation_normalized_percentile.value | 0.99506906 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |