An Improved RAPID Imaging Method of Defects in Composite Plate Based on Feature Identification by Machine Learning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/s22218413
The RAPID (reconstruction algorithm for probabilistic inspection of defect) method based on Lamb wave detection is an effective method to give the position information of a defect in composite plate. In this paper, an improved RAPID imaging method based on machine learning (ML) is proposed to precisely visualize the location and features of defects in composite plate. First, the specific feature information of the defect, such as type, size and direction, can be identified by analyzing the detection signals through multiple machine learning models. Then, according to the obtained defect features, the scaling parameter β of the RAPID method which controls the size of the elliptical area is revised, and weights are set to the important detection paths which are related to defect features to realize precise defect imaging. The simulation results show that the proposed method can intuitively characterize the location and related feature information of the defect, and effectively improve the accuracy of defect imaging.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s22218413
- https://www.mdpi.com/1424-8220/22/21/8413/pdf?version=1667891066
- OA Status
- gold
- Cited By
- 2
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4307861882
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4307861882Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s22218413Digital Object Identifier
- Title
-
An Improved RAPID Imaging Method of Defects in Composite Plate Based on Feature Identification by Machine LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-01Full publication date if available
- Authors
-
Fei Deng, Xiran Zhang, Ning Yu, Lin ZhaoList of authors in order
- Landing page
-
https://doi.org/10.3390/s22218413Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/22/21/8413/pdf?version=1667891066Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/22/21/8413/pdf?version=1667891066Direct OA link when available
- Concepts
-
Artificial intelligence, Feature (linguistics), Pattern recognition (psychology), Computer science, Machine vision, Probabilistic logic, Identification (biology), Set (abstract data type), Composite plate, Composite number, Position (finance), Computer vision, Algorithm, Finance, Philosophy, Programming language, Economics, Linguistics, Botany, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4307861882 |
|---|---|
| doi | https://doi.org/10.3390/s22218413 |
| ids.doi | https://doi.org/10.3390/s22218413 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36366110 |
| ids.openalex | https://openalex.org/W4307861882 |
| fwci | 0.32263118 |
| type | article |
| title | An Improved RAPID Imaging Method of Defects in Composite Plate Based on Feature Identification by Machine Learning |
| awards[0].id | https://openalex.org/G1287172703 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 11202137 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 21 |
| biblio.volume | 22 |
| biblio.last_page | 8413 |
| biblio.first_page | 8413 |
| topics[0].id | https://openalex.org/T10662 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2211 |
| topics[0].subfield.display_name | Mechanics of Materials |
| topics[0].display_name | Ultrasonics and Acoustic Wave Propagation |
| topics[1].id | https://openalex.org/T12169 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9994999766349792 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Non-Destructive Testing Techniques |
| topics[2].id | https://openalex.org/T11609 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9980999827384949 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2212 |
| topics[2].subfield.display_name | Ocean Engineering |
| topics[2].display_name | Geophysical Methods and Applications |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6855019927024841 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C2776401178 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6811678409576416 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[1].display_name | Feature (linguistics) |
| concepts[2].id | https://openalex.org/C153180895 |
| concepts[2].level | 2 |
| concepts[2].score | 0.583186686038971 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[2].display_name | Pattern recognition (psychology) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5740305781364441 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C5339829 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5037950873374939 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1425977 |
| concepts[4].display_name | Machine vision |
| concepts[5].id | https://openalex.org/C49937458 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47519242763519287 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[5].display_name | Probabilistic logic |
| concepts[6].id | https://openalex.org/C116834253 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47392067313194275 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[6].display_name | Identification (biology) |
| concepts[7].id | https://openalex.org/C177264268 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4633980095386505 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[7].display_name | Set (abstract data type) |
| concepts[8].id | https://openalex.org/C2778378087 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4627748727798462 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5156768 |
| concepts[8].display_name | Composite plate |
| concepts[9].id | https://openalex.org/C104779481 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44421297311782837 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q50707 |
| concepts[9].display_name | Composite number |
| concepts[10].id | https://openalex.org/C198082294 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4139885902404785 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3399648 |
| concepts[10].display_name | Position (finance) |
| concepts[11].id | https://openalex.org/C31972630 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3771156370639801 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[11].display_name | Computer vision |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.25284552574157715 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C10138342 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[13].display_name | Finance |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| concepts[17].id | https://openalex.org/C41895202 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[17].display_name | Linguistics |
| concepts[18].id | https://openalex.org/C59822182 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[18].display_name | Botany |
| concepts[19].id | https://openalex.org/C86803240 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[19].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.6855019927024841 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/feature |
| keywords[1].score | 0.6811678409576416 |
| keywords[1].display_name | Feature (linguistics) |
| keywords[2].id | https://openalex.org/keywords/pattern-recognition |
| keywords[2].score | 0.583186686038971 |
| keywords[2].display_name | Pattern recognition (psychology) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5740305781364441 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/machine-vision |
| keywords[4].score | 0.5037950873374939 |
| keywords[4].display_name | Machine vision |
| keywords[5].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[5].score | 0.47519242763519287 |
| keywords[5].display_name | Probabilistic logic |
| keywords[6].id | https://openalex.org/keywords/identification |
| keywords[6].score | 0.47392067313194275 |
| keywords[6].display_name | Identification (biology) |
| keywords[7].id | https://openalex.org/keywords/set |
| keywords[7].score | 0.4633980095386505 |
| keywords[7].display_name | Set (abstract data type) |
| keywords[8].id | https://openalex.org/keywords/composite-plate |
| keywords[8].score | 0.4627748727798462 |
| keywords[8].display_name | Composite plate |
| keywords[9].id | https://openalex.org/keywords/composite-number |
| keywords[9].score | 0.44421297311782837 |
| keywords[9].display_name | Composite number |
| keywords[10].id | https://openalex.org/keywords/position |
| keywords[10].score | 0.4139885902404785 |
| keywords[10].display_name | Position (finance) |
| keywords[11].id | https://openalex.org/keywords/computer-vision |
| keywords[11].score | 0.3771156370639801 |
| keywords[11].display_name | Computer vision |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.25284552574157715 |
| keywords[12].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.3390/s22218413 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/22/21/8413/pdf?version=1667891066 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s22218413 |
| locations[1].id | pmid:36366110 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36366110 |
| locations[2].id | pmh:oai:doaj.org/article:dec88efe0f874ba49743871a553ad87d |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 22, Iss 21, p 8413 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/dec88efe0f874ba49743871a553ad87d |
| locations[3].id | pmh:oai:mdpi.com:/1424-8220/22/21/8413/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors; Volume 22; Issue 21; Pages: 8413 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/s22218413 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:9655716 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9655716 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5101966844 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7600-6295 |
| authorships[0].author.display_name | Fei Deng |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I67001856 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 200235, China |
| authorships[0].institutions[0].id | https://openalex.org/I67001856 |
| authorships[0].institutions[0].ror | https://ror.org/00fjzqj15 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I67001856 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shanghai Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fei Deng |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 200235, China |
| authorships[1].author.id | https://openalex.org/A5021863884 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Xiran Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I67001856 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 200235, China |
| authorships[1].institutions[0].id | https://openalex.org/I67001856 |
| authorships[1].institutions[0].ror | https://ror.org/00fjzqj15 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I67001856 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shanghai Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiran Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 200235, China |
| authorships[2].author.id | https://openalex.org/A5100752316 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3046-4338 |
| authorships[2].author.display_name | Ning Yu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I67001856 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 200235, China |
| authorships[2].institutions[0].id | https://openalex.org/I67001856 |
| authorships[2].institutions[0].ror | https://ror.org/00fjzqj15 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I67001856 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shanghai Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ning Yu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 200235, China |
| authorships[3].author.id | https://openalex.org/A5101667268 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1153-8554 |
| authorships[3].author.display_name | Lin Zhao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I67001856 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 200235, China |
| authorships[3].institutions[0].id | https://openalex.org/I67001856 |
| authorships[3].institutions[0].ror | https://ror.org/00fjzqj15 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I67001856 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Shanghai Institute of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Lin Zhao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 200235, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/22/21/8413/pdf?version=1667891066 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Improved RAPID Imaging Method of Defects in Composite Plate Based on Feature Identification by Machine Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10662 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2211 |
| primary_topic.subfield.display_name | Mechanics of Materials |
| primary_topic.display_name | Ultrasonics and Acoustic Wave Propagation |
| related_works | https://openalex.org/W2494523064, https://openalex.org/W2943623134, https://openalex.org/W2215759665, https://openalex.org/W2960358116, https://openalex.org/W2030292806, https://openalex.org/W3041172967, https://openalex.org/W2749065928, https://openalex.org/W2147155098, https://openalex.org/W4287727129, https://openalex.org/W2358868262 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s22218413 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/22/21/8413/pdf?version=1667891066 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s22218413 |
| primary_location.id | doi:10.3390/s22218413 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/22/21/8413/pdf?version=1667891066 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s22218413 |
| publication_date | 2022-11-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W1974971113, https://openalex.org/W1981119471, https://openalex.org/W2946221058, https://openalex.org/W6628516021, https://openalex.org/W2060064508, https://openalex.org/W2040460670, https://openalex.org/W2053036601, https://openalex.org/W1966826428, https://openalex.org/W1969030052, https://openalex.org/W6785268724, https://openalex.org/W3091256997, https://openalex.org/W3021953067, https://openalex.org/W1993584597, https://openalex.org/W2917478197, https://openalex.org/W4283592890, https://openalex.org/W3184083226, https://openalex.org/W2492944533, https://openalex.org/W4220767154, https://openalex.org/W3005076277, https://openalex.org/W2010376731, https://openalex.org/W3014046978, https://openalex.org/W4236968731, https://openalex.org/W2151842197, https://openalex.org/W3020789896, https://openalex.org/W3087675615, https://openalex.org/W4239510810, https://openalex.org/W3212471930, https://openalex.org/W2768348081, https://openalex.org/W2059794949, https://openalex.org/W2970102322, https://openalex.org/W3094955997, https://openalex.org/W1424032919 |
| referenced_works_count | 32 |
| abstract_inverted_index.a | 25 |
| abstract_inverted_index.In | 30 |
| abstract_inverted_index.an | 16, 33 |
| abstract_inverted_index.as | 66 |
| abstract_inverted_index.be | 72 |
| abstract_inverted_index.by | 74 |
| abstract_inverted_index.in | 27, 54 |
| abstract_inverted_index.is | 15, 43, 107 |
| abstract_inverted_index.of | 7, 24, 52, 62, 95, 103, 146, 154 |
| abstract_inverted_index.on | 11, 39 |
| abstract_inverted_index.to | 19, 45, 86, 113, 121, 124 |
| abstract_inverted_index.β | 94 |
| abstract_inverted_index.The | 0, 129 |
| abstract_inverted_index.and | 50, 69, 109, 142, 149 |
| abstract_inverted_index.are | 111, 119 |
| abstract_inverted_index.can | 71, 137 |
| abstract_inverted_index.for | 4 |
| abstract_inverted_index.set | 112 |
| abstract_inverted_index.the | 21, 48, 58, 63, 76, 87, 91, 96, 101, 104, 114, 134, 140, 147, 152 |
| abstract_inverted_index.(ML) | 42 |
| abstract_inverted_index.Lamb | 12 |
| abstract_inverted_index.area | 106 |
| abstract_inverted_index.give | 20 |
| abstract_inverted_index.show | 132 |
| abstract_inverted_index.size | 68, 102 |
| abstract_inverted_index.such | 65 |
| abstract_inverted_index.that | 133 |
| abstract_inverted_index.this | 31 |
| abstract_inverted_index.wave | 13 |
| abstract_inverted_index.RAPID | 1, 35, 97 |
| abstract_inverted_index.Then, | 84 |
| abstract_inverted_index.based | 10, 38 |
| abstract_inverted_index.paths | 117 |
| abstract_inverted_index.type, | 67 |
| abstract_inverted_index.which | 99, 118 |
| abstract_inverted_index.First, | 57 |
| abstract_inverted_index.defect | 26, 89, 122, 127, 155 |
| abstract_inverted_index.method | 9, 18, 37, 98, 136 |
| abstract_inverted_index.paper, | 32 |
| abstract_inverted_index.plate. | 29, 56 |
| abstract_inverted_index.defect) | 8 |
| abstract_inverted_index.defect, | 64, 148 |
| abstract_inverted_index.defects | 53 |
| abstract_inverted_index.feature | 60, 144 |
| abstract_inverted_index.imaging | 36 |
| abstract_inverted_index.improve | 151 |
| abstract_inverted_index.machine | 40, 81 |
| abstract_inverted_index.models. | 83 |
| abstract_inverted_index.precise | 126 |
| abstract_inverted_index.realize | 125 |
| abstract_inverted_index.related | 120, 143 |
| abstract_inverted_index.results | 131 |
| abstract_inverted_index.scaling | 92 |
| abstract_inverted_index.signals | 78 |
| abstract_inverted_index.through | 79 |
| abstract_inverted_index.weights | 110 |
| abstract_inverted_index.accuracy | 153 |
| abstract_inverted_index.controls | 100 |
| abstract_inverted_index.features | 51, 123 |
| abstract_inverted_index.imaging. | 128, 156 |
| abstract_inverted_index.improved | 34 |
| abstract_inverted_index.learning | 41, 82 |
| abstract_inverted_index.location | 49, 141 |
| abstract_inverted_index.multiple | 80 |
| abstract_inverted_index.obtained | 88 |
| abstract_inverted_index.position | 22 |
| abstract_inverted_index.proposed | 44, 135 |
| abstract_inverted_index.revised, | 108 |
| abstract_inverted_index.specific | 59 |
| abstract_inverted_index.according | 85 |
| abstract_inverted_index.algorithm | 3 |
| abstract_inverted_index.analyzing | 75 |
| abstract_inverted_index.composite | 28, 55 |
| abstract_inverted_index.detection | 14, 77, 116 |
| abstract_inverted_index.effective | 17 |
| abstract_inverted_index.features, | 90 |
| abstract_inverted_index.important | 115 |
| abstract_inverted_index.parameter | 93 |
| abstract_inverted_index.precisely | 46 |
| abstract_inverted_index.visualize | 47 |
| abstract_inverted_index.direction, | 70 |
| abstract_inverted_index.elliptical | 105 |
| abstract_inverted_index.identified | 73 |
| abstract_inverted_index.inspection | 6 |
| abstract_inverted_index.simulation | 130 |
| abstract_inverted_index.effectively | 150 |
| abstract_inverted_index.information | 23, 61, 145 |
| abstract_inverted_index.intuitively | 138 |
| abstract_inverted_index.characterize | 139 |
| abstract_inverted_index.probabilistic | 5 |
| abstract_inverted_index.(reconstruction | 2 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5101966844 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I67001856 |
| citation_normalized_percentile.value | 0.48464396 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |