An Improved Similarity Trajectory Method Based on Monitoring Data under Multiple Operating Conditions Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/app112210968
With the complexity of the task requirement, multiple operating conditions have gradually become the common scenario for equipment. However, the degradation trend of monitoring data cannot be accurately extracted in life prediction under multiple operating conditions, which is because some monitoring data is affected by the operating conditions. Aiming at this problem, this paper proposes an improved similarity trajectory method that can directly use the monitoring data under multiple operating conditions for life prediction. The morphological pattern and symbolic aggregate approximation-based similarity measurement method (MP-SAX) is first used to measure the similarity between the monitoring data under multiple operating conditions. Then, the similar life candidate set, and corresponding weight are obtained according to the MP-SAX. Finally, the life prediction results of equipment under multiple operating conditions can be calculated by aggregating the similar life candidate set. The proposed method is validated by the public datasets from NASA Ames Prognostics Data Repository. The results show that the proposed method can directly and effectively use the original monitoring data for life prediction without extracting the degradation trend of the monitoring data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app112210968
- https://www.mdpi.com/2076-3417/11/22/10968/pdf?version=1637550241
- OA Status
- gold
- Cited By
- 1
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3216640653
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3216640653Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app112210968Digital Object Identifier
- Title
-
An Improved Similarity Trajectory Method Based on Monitoring Data under Multiple Operating ConditionsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-19Full publication date if available
- Authors
-
Jiancheng Yin, Yuqing Li, Rixin Wang, Minqiang XuList of authors in order
- Landing page
-
https://doi.org/10.3390/app112210968Publisher landing page
- PDF URL
-
https://www.mdpi.com/2076-3417/11/22/10968/pdf?version=1637550241Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2076-3417/11/22/10968/pdf?version=1637550241Direct OA link when available
- Concepts
-
Prognostics, Data mining, Similarity (geometry), Computer science, Data set, Trajectory, Set (abstract data type), Artificial intelligence, Image (mathematics), Programming language, Astronomy, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3216640653 |
|---|---|
| doi | https://doi.org/10.3390/app112210968 |
| ids.doi | https://doi.org/10.3390/app112210968 |
| ids.mag | 3216640653 |
| ids.openalex | https://openalex.org/W3216640653 |
| fwci | 0.16845941 |
| type | article |
| title | An Improved Similarity Trajectory Method Based on Monitoring Data under Multiple Operating Conditions |
| biblio.issue | 22 |
| biblio.volume | 11 |
| biblio.last_page | 10968 |
| biblio.first_page | 10968 |
| topics[0].id | https://openalex.org/T14306 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9779999852180481 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2213 |
| topics[0].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[0].display_name | Technology Assessment and Management |
| topics[1].id | https://openalex.org/T10876 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9666000008583069 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Fault Detection and Control Systems |
| topics[2].id | https://openalex.org/T10780 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.964900016784668 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2213 |
| topics[2].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[2].display_name | Reliability and Maintenance Optimization |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C129364497 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6981359124183655 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3042561 |
| concepts[0].display_name | Prognostics |
| concepts[1].id | https://openalex.org/C124101348 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6714993715286255 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[1].display_name | Data mining |
| concepts[2].id | https://openalex.org/C103278499 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6140272617340088 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[2].display_name | Similarity (geometry) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6119700074195862 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C58489278 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5793627500534058 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[4].display_name | Data set |
| concepts[5].id | https://openalex.org/C13662910 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5213416814804077 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q193139 |
| concepts[5].display_name | Trajectory |
| concepts[6].id | https://openalex.org/C177264268 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5119694471359253 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[6].display_name | Set (abstract data type) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.2390425205230713 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C115961682 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[8].display_name | Image (mathematics) |
| concepts[9].id | https://openalex.org/C199360897 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[9].display_name | Programming language |
| concepts[10].id | https://openalex.org/C1276947 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[10].display_name | Astronomy |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/prognostics |
| keywords[0].score | 0.6981359124183655 |
| keywords[0].display_name | Prognostics |
| keywords[1].id | https://openalex.org/keywords/data-mining |
| keywords[1].score | 0.6714993715286255 |
| keywords[1].display_name | Data mining |
| keywords[2].id | https://openalex.org/keywords/similarity |
| keywords[2].score | 0.6140272617340088 |
| keywords[2].display_name | Similarity (geometry) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6119700074195862 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/data-set |
| keywords[4].score | 0.5793627500534058 |
| keywords[4].display_name | Data set |
| keywords[5].id | https://openalex.org/keywords/trajectory |
| keywords[5].score | 0.5213416814804077 |
| keywords[5].display_name | Trajectory |
| keywords[6].id | https://openalex.org/keywords/set |
| keywords[6].score | 0.5119694471359253 |
| keywords[6].display_name | Set (abstract data type) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.2390425205230713 |
| keywords[7].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.3390/app112210968 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2076-3417/11/22/10968/pdf?version=1637550241 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app112210968 |
| locations[1].id | pmh:oai:doaj.org/article:2e3ab10801a149cbaa89efdf91bb768c |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 11, Iss 22, p 10968 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/2e3ab10801a149cbaa89efdf91bb768c |
| locations[2].id | pmh:oai:mdpi.com:/2076-3417/11/22/10968/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Applied Sciences; Volume 11; Issue 22; Pages: 10968 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/app112210968 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5053360857 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0844-4418 |
| authorships[0].author.display_name | Jiancheng Yin |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I204983213 |
| authorships[0].affiliations[0].raw_affiliation_string | Deep Space Exploration Research Center, Harbin Institute of Technology, Harbin 150001, China |
| authorships[0].institutions[0].id | https://openalex.org/I204983213 |
| authorships[0].institutions[0].ror | https://ror.org/01yqg2h08 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I204983213 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Harbin Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiancheng Yin |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Deep Space Exploration Research Center, Harbin Institute of Technology, Harbin 150001, China |
| authorships[1].author.id | https://openalex.org/A5100379931 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0275-4004 |
| authorships[1].author.display_name | Yuqing Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I204983213 |
| authorships[1].affiliations[0].raw_affiliation_string | Deep Space Exploration Research Center, Harbin Institute of Technology, Harbin 150001, China |
| authorships[1].institutions[0].id | https://openalex.org/I204983213 |
| authorships[1].institutions[0].ror | https://ror.org/01yqg2h08 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I204983213 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Harbin Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yuqing Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Deep Space Exploration Research Center, Harbin Institute of Technology, Harbin 150001, China |
| authorships[2].author.id | https://openalex.org/A5019373327 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2907-011X |
| authorships[2].author.display_name | Rixin Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204983213 |
| authorships[2].affiliations[0].raw_affiliation_string | Deep Space Exploration Research Center, Harbin Institute of Technology, Harbin 150001, China |
| authorships[2].institutions[0].id | https://openalex.org/I204983213 |
| authorships[2].institutions[0].ror | https://ror.org/01yqg2h08 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204983213 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Harbin Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rixin Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Deep Space Exploration Research Center, Harbin Institute of Technology, Harbin 150001, China |
| authorships[3].author.id | https://openalex.org/A5100413867 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3625-1736 |
| authorships[3].author.display_name | Minqiang Xu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I204983213 |
| authorships[3].affiliations[0].raw_affiliation_string | Deep Space Exploration Research Center, Harbin Institute of Technology, Harbin 150001, China |
| authorships[3].institutions[0].id | https://openalex.org/I204983213 |
| authorships[3].institutions[0].ror | https://ror.org/01yqg2h08 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I204983213 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Harbin Institute of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Minqiang Xu |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Deep Space Exploration Research Center, Harbin Institute of Technology, Harbin 150001, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2076-3417/11/22/10968/pdf?version=1637550241 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-12-06T00:00:00 |
| display_name | An Improved Similarity Trajectory Method Based on Monitoring Data under Multiple Operating Conditions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14306 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9779999852180481 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2213 |
| primary_topic.subfield.display_name | Safety, Risk, Reliability and Quality |
| primary_topic.display_name | Technology Assessment and Management |
| related_works | https://openalex.org/W2310476526, https://openalex.org/W3213192587, https://openalex.org/W2144291498, https://openalex.org/W2535730979, https://openalex.org/W3193475673, https://openalex.org/W2370073012, https://openalex.org/W4386567722, https://openalex.org/W2168646784, https://openalex.org/W2965730886, https://openalex.org/W2594414941 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/app112210968 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2076-3417/11/22/10968/pdf?version=1637550241 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app112210968 |
| primary_location.id | doi:10.3390/app112210968 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2076-3417/11/22/10968/pdf?version=1637550241 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app112210968 |
| publication_date | 2021-11-19 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2773549135, https://openalex.org/W2045186954, https://openalex.org/W3102904972, https://openalex.org/W3019321032, https://openalex.org/W3089207818, https://openalex.org/W3212647012, https://openalex.org/W3210048380, https://openalex.org/W3205360757, https://openalex.org/W3045078359, https://openalex.org/W2985380938, https://openalex.org/W3015525807, https://openalex.org/W3198247281, https://openalex.org/W3205859076, https://openalex.org/W3201901361, https://openalex.org/W2126385963, https://openalex.org/W2149956719, https://openalex.org/W2121092003, https://openalex.org/W2789844661, https://openalex.org/W2783721168, https://openalex.org/W2896911404, https://openalex.org/W2943919793, https://openalex.org/W2341207936, https://openalex.org/W6796822729, https://openalex.org/W2614537199, https://openalex.org/W2967043547, https://openalex.org/W2063483719, https://openalex.org/W2070310969, https://openalex.org/W1454493499, https://openalex.org/W2020305404, https://openalex.org/W2022086727, https://openalex.org/W2003021193, https://openalex.org/W1993332189, https://openalex.org/W2120841219, https://openalex.org/W2016210396, https://openalex.org/W3100777062, https://openalex.org/W3169997804 |
| referenced_works_count | 36 |
| abstract_inverted_index.an | 55 |
| abstract_inverted_index.at | 49 |
| abstract_inverted_index.be | 26, 127 |
| abstract_inverted_index.by | 44, 129, 141 |
| abstract_inverted_index.in | 29 |
| abstract_inverted_index.is | 37, 42, 85, 139 |
| abstract_inverted_index.of | 3, 22, 120, 175 |
| abstract_inverted_index.to | 88, 112 |
| abstract_inverted_index.The | 74, 136, 151 |
| abstract_inverted_index.and | 77, 106, 160 |
| abstract_inverted_index.are | 109 |
| abstract_inverted_index.can | 61, 126, 158 |
| abstract_inverted_index.for | 16, 71, 167 |
| abstract_inverted_index.the | 1, 4, 13, 19, 45, 64, 90, 93, 101, 113, 116, 131, 142, 155, 163, 172, 176 |
| abstract_inverted_index.use | 63, 162 |
| abstract_inverted_index.Ames | 147 |
| abstract_inverted_index.Data | 149 |
| abstract_inverted_index.NASA | 146 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.data | 24, 41, 66, 95, 166 |
| abstract_inverted_index.from | 145 |
| abstract_inverted_index.have | 10 |
| abstract_inverted_index.life | 30, 72, 103, 117, 133, 168 |
| abstract_inverted_index.set, | 105 |
| abstract_inverted_index.set. | 135 |
| abstract_inverted_index.show | 153 |
| abstract_inverted_index.some | 39 |
| abstract_inverted_index.task | 5 |
| abstract_inverted_index.that | 60, 154 |
| abstract_inverted_index.this | 50, 52 |
| abstract_inverted_index.used | 87 |
| abstract_inverted_index.Then, | 100 |
| abstract_inverted_index.data. | 178 |
| abstract_inverted_index.first | 86 |
| abstract_inverted_index.paper | 53 |
| abstract_inverted_index.trend | 21, 174 |
| abstract_inverted_index.under | 32, 67, 96, 122 |
| abstract_inverted_index.which | 36 |
| abstract_inverted_index.Aiming | 48 |
| abstract_inverted_index.become | 12 |
| abstract_inverted_index.cannot | 25 |
| abstract_inverted_index.common | 14 |
| abstract_inverted_index.method | 59, 83, 138, 157 |
| abstract_inverted_index.public | 143 |
| abstract_inverted_index.weight | 108 |
| abstract_inverted_index.MP-SAX. | 114 |
| abstract_inverted_index.because | 38 |
| abstract_inverted_index.between | 92 |
| abstract_inverted_index.measure | 89 |
| abstract_inverted_index.pattern | 76 |
| abstract_inverted_index.results | 119, 152 |
| abstract_inverted_index.similar | 102, 132 |
| abstract_inverted_index.without | 170 |
| abstract_inverted_index.(MP-SAX) | 84 |
| abstract_inverted_index.Finally, | 115 |
| abstract_inverted_index.However, | 18 |
| abstract_inverted_index.affected | 43 |
| abstract_inverted_index.datasets | 144 |
| abstract_inverted_index.directly | 62, 159 |
| abstract_inverted_index.improved | 56 |
| abstract_inverted_index.multiple | 7, 33, 68, 97, 123 |
| abstract_inverted_index.obtained | 110 |
| abstract_inverted_index.original | 164 |
| abstract_inverted_index.problem, | 51 |
| abstract_inverted_index.proposed | 137, 156 |
| abstract_inverted_index.proposes | 54 |
| abstract_inverted_index.scenario | 15 |
| abstract_inverted_index.symbolic | 78 |
| abstract_inverted_index.according | 111 |
| abstract_inverted_index.aggregate | 79 |
| abstract_inverted_index.candidate | 104, 134 |
| abstract_inverted_index.equipment | 121 |
| abstract_inverted_index.extracted | 28 |
| abstract_inverted_index.gradually | 11 |
| abstract_inverted_index.operating | 8, 34, 46, 69, 98, 124 |
| abstract_inverted_index.validated | 140 |
| abstract_inverted_index.accurately | 27 |
| abstract_inverted_index.calculated | 128 |
| abstract_inverted_index.complexity | 2 |
| abstract_inverted_index.conditions | 9, 70, 125 |
| abstract_inverted_index.equipment. | 17 |
| abstract_inverted_index.extracting | 171 |
| abstract_inverted_index.monitoring | 23, 40, 65, 94, 165, 177 |
| abstract_inverted_index.prediction | 31, 118, 169 |
| abstract_inverted_index.similarity | 57, 81, 91 |
| abstract_inverted_index.trajectory | 58 |
| abstract_inverted_index.Prognostics | 148 |
| abstract_inverted_index.Repository. | 150 |
| abstract_inverted_index.aggregating | 130 |
| abstract_inverted_index.conditions, | 35 |
| abstract_inverted_index.conditions. | 47, 99 |
| abstract_inverted_index.degradation | 20, 173 |
| abstract_inverted_index.effectively | 161 |
| abstract_inverted_index.measurement | 82 |
| abstract_inverted_index.prediction. | 73 |
| abstract_inverted_index.requirement, | 6 |
| abstract_inverted_index.corresponding | 107 |
| abstract_inverted_index.morphological | 75 |
| abstract_inverted_index.approximation-based | 80 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5100413867 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I204983213 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/12 |
| sustainable_development_goals[0].score | 0.550000011920929 |
| sustainable_development_goals[0].display_name | Responsible consumption and production |
| citation_normalized_percentile.value | 0.51839263 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |