An Integrative Multi-Omics Random Forest Framework for Robust Biomarker Discovery Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1093/gigascience/giaf148
High-throughput technologies now produce a wide array of omics data, from genomic and transcriptomic profiles to epigenomic and proteomic measurements. Integrating multiple omics layers measured on the same samples can reveal cross-layer molecular hubs that single-layer analyses miss. We present an unsupervised, multivariate random forest (MRF) framework with an inverse minimal depth (IMD) importance to prioritize shared biomarkers across omics. In each forest, one layer serves as a multivariate response and the other as predictors; IMD summarizes how early a predictor (or response MSRV) appears across trees, yielding interpretable, cross-layer feature rankings. We provide three IMD-based selection strategies and introduce an optional IMD power transform to enhance sensitivity to interaction signals. In extensive simulations spanning linear, nonlinear, and interaction regimes, our method matches SPLS/CCA under linear settings and outperforms them as nonlinearity increases, while adapted univariate ensemble learners (RF, GBM, XGBoost) underperform in the multivariate, unsupervised context. Applied to TCGA BRCA and COAD, MRF-IMD identifies genes, CpGs, and miRNAs enriched for cancer-relevant pathways and yields more robust survival stratification than linear integrators with matched model sizes. In a TCGA pan-cancer analysis, MRF-IMD features achieve higher ARI than alternatives and recover coherent tumor-type clusters; in ADNI, the integrative signature improves dementia-progression stratification over a published methylation risk score. Our scalable, interpretable MRF-IMD framework advances reliable multi-omics biomarker discovery when nonlinear, cross-layer dependencies matter.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/gigascience/giaf148
- https://academic.oup.com/gigascience/advance-article-pdf/doi/10.1093/gigascience/giaf148/65817810/giaf148.pdf
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4417156315
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417156315Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/gigascience/giaf148Digital Object Identifier
- Title
-
An Integrative Multi-Omics Random Forest Framework for Robust Biomarker DiscoveryWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-08Full publication date if available
- Authors
-
Weidong Zhang, Hanchen Huang, Lily Wang, Brian D. Lehmann, Xi ChenList of authors in order
- Landing page
-
https://doi.org/10.1093/gigascience/giaf148Publisher landing page
- PDF URL
-
https://academic.oup.com/gigascience/advance-article-pdf/doi/10.1093/gigascience/giaf148/65817810/giaf148.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/gigascience/advance-article-pdf/doi/10.1093/gigascience/giaf148/65817810/giaf148.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417156315 |
|---|---|
| doi | https://doi.org/10.1093/gigascience/giaf148 |
| ids.doi | https://doi.org/10.1093/gigascience/giaf148 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41363728 |
| ids.openalex | https://openalex.org/W4417156315 |
| fwci | |
| type | article |
| title | An Integrative Multi-Omics Random Forest Framework for Robust Biomarker Discovery |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list.value | 2439 |
| apc_list.currency | USD |
| apc_list.value_usd | 2439 |
| apc_paid.value | 2439 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2439 |
| language | en |
| locations[0].id | doi:10.1093/gigascience/giaf148 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2735135405 |
| locations[0].source.issn | 2047-217X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2047-217X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | GigaScience |
| locations[0].source.host_organization | https://openalex.org/P4310311647 |
| locations[0].source.host_organization_name | University of Oxford |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://academic.oup.com/gigascience/advance-article-pdf/doi/10.1093/gigascience/giaf148/65817810/giaf148.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | GigaScience |
| locations[0].landing_page_url | https://doi.org/10.1093/gigascience/giaf148 |
| locations[1].id | pmid:41363728 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | GigaScience |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41363728 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100428737 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2433-6823 |
| authorships[0].author.display_name | Weidong Zhang |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I145608581 |
| authorships[0].affiliations[0].raw_affiliation_string | Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA |
| authorships[0].institutions[0].id | https://openalex.org/I145608581 |
| authorships[0].institutions[0].ror | https://ror.org/02dgjyy92 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I145608581 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Miami |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wei Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA |
| authorships[1].author.id | https://openalex.org/A5103640291 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Hanchen Huang |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I145608581 |
| authorships[1].affiliations[0].raw_affiliation_string | Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA |
| authorships[1].institutions[0].id | https://openalex.org/I145608581 |
| authorships[1].institutions[0].ror | https://ror.org/02dgjyy92 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I145608581 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Miami |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hanchen Huang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA |
| authorships[2].author.id | https://openalex.org/A5101537858 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6630-8767 |
| authorships[2].author.display_name | Lily Wang |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210157065 |
| authorships[2].affiliations[0].raw_affiliation_string | Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I145608581 |
| authorships[2].affiliations[1].raw_affiliation_string | Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I4210131692 |
| authorships[2].affiliations[2].raw_affiliation_string | Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA |
| authorships[2].institutions[0].id | https://openalex.org/I4210131692 |
| authorships[2].institutions[0].ror | https://ror.org/02vawgn43 |
| authorships[2].institutions[0].type | other |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210131692 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Dr. John T. Macdonald Foundation |
| authorships[2].institutions[1].id | https://openalex.org/I4210157065 |
| authorships[2].institutions[1].ror | https://ror.org/0552r4b12 |
| authorships[2].institutions[1].type | healthcare |
| authorships[2].institutions[1].lineage | https://openalex.org/I145608581, https://openalex.org/I4210101935, https://openalex.org/I4210157065 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | Sylvester Comprehensive Cancer Center |
| authorships[2].institutions[2].id | https://openalex.org/I145608581 |
| authorships[2].institutions[2].ror | https://ror.org/02dgjyy92 |
| authorships[2].institutions[2].type | education |
| authorships[2].institutions[2].lineage | https://openalex.org/I145608581 |
| authorships[2].institutions[2].country_code | US |
| authorships[2].institutions[2].display_name | University of Miami |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lily Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA, Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA |
| authorships[3].author.id | https://openalex.org/A5072853514 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0407-5248 |
| authorships[3].author.display_name | Brian D. Lehmann |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I901861585 |
| authorships[3].affiliations[0].raw_affiliation_string | Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA |
| authorships[3].institutions[0].id | https://openalex.org/I901861585 |
| authorships[3].institutions[0].ror | https://ror.org/05dq2gs74 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210162197, https://openalex.org/I901861585 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Vanderbilt University Medical Center |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Brian D Lehmann |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA |
| authorships[4].author.id | https://openalex.org/A5047514480 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9706-3571 |
| authorships[4].author.display_name | Xi Chen |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I145608581 |
| authorships[4].affiliations[0].raw_affiliation_string | Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I4210157065 |
| authorships[4].affiliations[1].raw_affiliation_string | Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA |
| authorships[4].institutions[0].id | https://openalex.org/I4210157065 |
| authorships[4].institutions[0].ror | https://ror.org/0552r4b12 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I145608581, https://openalex.org/I4210101935, https://openalex.org/I4210157065 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Sylvester Comprehensive Cancer Center |
| authorships[4].institutions[1].id | https://openalex.org/I145608581 |
| authorships[4].institutions[1].ror | https://ror.org/02dgjyy92 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I145608581 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | University of Miami |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | X Steven Chen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/gigascience/advance-article-pdf/doi/10.1093/gigascience/giaf148/65817810/giaf148.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-09T00:00:00 |
| display_name | An Integrative Multi-Omics Random Forest Framework for Robust Biomarker Discovery |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-11T00:21:10.989143 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1093/gigascience/giaf148 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2735135405 |
| best_oa_location.source.issn | 2047-217X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2047-217X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | GigaScience |
| best_oa_location.source.host_organization | https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_name | University of Oxford |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://academic.oup.com/gigascience/advance-article-pdf/doi/10.1093/gigascience/giaf148/65817810/giaf148.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | GigaScience |
| best_oa_location.landing_page_url | https://doi.org/10.1093/gigascience/giaf148 |
| primary_location.id | doi:10.1093/gigascience/giaf148 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2735135405 |
| primary_location.source.issn | 2047-217X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2047-217X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | GigaScience |
| primary_location.source.host_organization | https://openalex.org/P4310311647 |
| primary_location.source.host_organization_name | University of Oxford |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://academic.oup.com/gigascience/advance-article-pdf/doi/10.1093/gigascience/giaf148/65817810/giaf148.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | GigaScience |
| primary_location.landing_page_url | https://doi.org/10.1093/gigascience/giaf148 |
| publication_date | 2025-12-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 68, 80, 178, 203 |
| abstract_inverted_index.In | 61, 112, 177 |
| abstract_inverted_index.We | 39, 93 |
| abstract_inverted_index.an | 41, 49, 101 |
| abstract_inverted_index.as | 67, 74, 131 |
| abstract_inverted_index.in | 143, 194 |
| abstract_inverted_index.of | 8 |
| abstract_inverted_index.on | 26 |
| abstract_inverted_index.to | 16, 55, 106, 109, 149 |
| abstract_inverted_index.(or | 82 |
| abstract_inverted_index.ARI | 186 |
| abstract_inverted_index.IMD | 76, 103 |
| abstract_inverted_index.Our | 208 |
| abstract_inverted_index.and | 13, 18, 71, 99, 118, 128, 152, 158, 164, 189 |
| abstract_inverted_index.can | 30 |
| abstract_inverted_index.for | 161 |
| abstract_inverted_index.how | 78 |
| abstract_inverted_index.now | 3 |
| abstract_inverted_index.one | 64 |
| abstract_inverted_index.our | 121 |
| abstract_inverted_index.the | 27, 72, 144, 196 |
| abstract_inverted_index.(RF, | 139 |
| abstract_inverted_index.BRCA | 151 |
| abstract_inverted_index.GBM, | 140 |
| abstract_inverted_index.TCGA | 150, 179 |
| abstract_inverted_index.each | 62 |
| abstract_inverted_index.from | 11 |
| abstract_inverted_index.hubs | 34 |
| abstract_inverted_index.more | 166 |
| abstract_inverted_index.over | 202 |
| abstract_inverted_index.risk | 206 |
| abstract_inverted_index.same | 28 |
| abstract_inverted_index.than | 170, 187 |
| abstract_inverted_index.that | 35 |
| abstract_inverted_index.them | 130 |
| abstract_inverted_index.when | 218 |
| abstract_inverted_index.wide | 6 |
| abstract_inverted_index.with | 48, 173 |
| abstract_inverted_index.(IMD) | 53 |
| abstract_inverted_index.(MRF) | 46 |
| abstract_inverted_index.ADNI, | 195 |
| abstract_inverted_index.COAD, | 153 |
| abstract_inverted_index.CpGs, | 157 |
| abstract_inverted_index.MSRV) | 84 |
| abstract_inverted_index.array | 7 |
| abstract_inverted_index.data, | 10 |
| abstract_inverted_index.depth | 52 |
| abstract_inverted_index.early | 79 |
| abstract_inverted_index.layer | 65 |
| abstract_inverted_index.miss. | 38 |
| abstract_inverted_index.model | 175 |
| abstract_inverted_index.omics | 9, 23 |
| abstract_inverted_index.other | 73 |
| abstract_inverted_index.power | 104 |
| abstract_inverted_index.three | 95 |
| abstract_inverted_index.under | 125 |
| abstract_inverted_index.while | 134 |
| abstract_inverted_index.across | 59, 86 |
| abstract_inverted_index.forest | 45 |
| abstract_inverted_index.genes, | 156 |
| abstract_inverted_index.higher | 185 |
| abstract_inverted_index.layers | 24 |
| abstract_inverted_index.linear | 126, 171 |
| abstract_inverted_index.method | 122 |
| abstract_inverted_index.miRNAs | 159 |
| abstract_inverted_index.omics. | 60 |
| abstract_inverted_index.random | 44 |
| abstract_inverted_index.reveal | 31 |
| abstract_inverted_index.robust | 167 |
| abstract_inverted_index.score. | 207 |
| abstract_inverted_index.serves | 66 |
| abstract_inverted_index.shared | 57 |
| abstract_inverted_index.sizes. | 176 |
| abstract_inverted_index.trees, | 87 |
| abstract_inverted_index.yields | 165 |
| abstract_inverted_index.Applied | 148 |
| abstract_inverted_index.MRF-IMD | 154, 182, 211 |
| abstract_inverted_index.achieve | 184 |
| abstract_inverted_index.adapted | 135 |
| abstract_inverted_index.appears | 85 |
| abstract_inverted_index.enhance | 107 |
| abstract_inverted_index.feature | 91 |
| abstract_inverted_index.forest, | 63 |
| abstract_inverted_index.genomic | 12 |
| abstract_inverted_index.inverse | 50 |
| abstract_inverted_index.linear, | 116 |
| abstract_inverted_index.matched | 174 |
| abstract_inverted_index.matches | 123 |
| abstract_inverted_index.matter. | 222 |
| abstract_inverted_index.minimal | 51 |
| abstract_inverted_index.present | 40 |
| abstract_inverted_index.produce | 4 |
| abstract_inverted_index.provide | 94 |
| abstract_inverted_index.recover | 190 |
| abstract_inverted_index.samples | 29 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.SPLS/CCA | 124 |
| abstract_inverted_index.XGBoost) | 141 |
| abstract_inverted_index.advances | 213 |
| abstract_inverted_index.analyses | 37 |
| abstract_inverted_index.coherent | 191 |
| abstract_inverted_index.context. | 147 |
| abstract_inverted_index.enriched | 160 |
| abstract_inverted_index.ensemble | 137 |
| abstract_inverted_index.features | 183 |
| abstract_inverted_index.improves | 199 |
| abstract_inverted_index.learners | 138 |
| abstract_inverted_index.measured | 25 |
| abstract_inverted_index.multiple | 22 |
| abstract_inverted_index.optional | 102 |
| abstract_inverted_index.pathways | 163 |
| abstract_inverted_index.profiles | 15 |
| abstract_inverted_index.regimes, | 120 |
| abstract_inverted_index.reliable | 214 |
| abstract_inverted_index.response | 70, 83 |
| abstract_inverted_index.settings | 127 |
| abstract_inverted_index.signals. | 111 |
| abstract_inverted_index.spanning | 115 |
| abstract_inverted_index.survival | 168 |
| abstract_inverted_index.yielding | 88 |
| abstract_inverted_index.IMD-based | 96 |
| abstract_inverted_index.analysis, | 181 |
| abstract_inverted_index.biomarker | 216 |
| abstract_inverted_index.clusters; | 193 |
| abstract_inverted_index.discovery | 217 |
| abstract_inverted_index.extensive | 113 |
| abstract_inverted_index.framework | 47, 212 |
| abstract_inverted_index.introduce | 100 |
| abstract_inverted_index.molecular | 33 |
| abstract_inverted_index.predictor | 81 |
| abstract_inverted_index.proteomic | 19 |
| abstract_inverted_index.published | 204 |
| abstract_inverted_index.rankings. | 92 |
| abstract_inverted_index.scalable, | 209 |
| abstract_inverted_index.selection | 97 |
| abstract_inverted_index.signature | 198 |
| abstract_inverted_index.transform | 105 |
| abstract_inverted_index.biomarkers | 58 |
| abstract_inverted_index.epigenomic | 17 |
| abstract_inverted_index.identifies | 155 |
| abstract_inverted_index.importance | 54 |
| abstract_inverted_index.increases, | 133 |
| abstract_inverted_index.nonlinear, | 117, 219 |
| abstract_inverted_index.pan-cancer | 180 |
| abstract_inverted_index.prioritize | 56 |
| abstract_inverted_index.strategies | 98 |
| abstract_inverted_index.summarizes | 77 |
| abstract_inverted_index.tumor-type | 192 |
| abstract_inverted_index.univariate | 136 |
| abstract_inverted_index.Integrating | 21 |
| abstract_inverted_index.cross-layer | 32, 90, 220 |
| abstract_inverted_index.integrative | 197 |
| abstract_inverted_index.integrators | 172 |
| abstract_inverted_index.interaction | 110, 119 |
| abstract_inverted_index.methylation | 205 |
| abstract_inverted_index.multi-omics | 215 |
| abstract_inverted_index.outperforms | 129 |
| abstract_inverted_index.predictors; | 75 |
| abstract_inverted_index.sensitivity | 108 |
| abstract_inverted_index.simulations | 114 |
| abstract_inverted_index.alternatives | 188 |
| abstract_inverted_index.dependencies | 221 |
| abstract_inverted_index.multivariate | 43, 69 |
| abstract_inverted_index.nonlinearity | 132 |
| abstract_inverted_index.single-layer | 36 |
| abstract_inverted_index.technologies | 2 |
| abstract_inverted_index.underperform | 142 |
| abstract_inverted_index.unsupervised | 146 |
| abstract_inverted_index.interpretable | 210 |
| abstract_inverted_index.measurements. | 20 |
| abstract_inverted_index.multivariate, | 145 |
| abstract_inverted_index.unsupervised, | 42 |
| abstract_inverted_index.interpretable, | 89 |
| abstract_inverted_index.stratification | 169, 201 |
| abstract_inverted_index.transcriptomic | 14 |
| abstract_inverted_index.High-throughput | 1 |
| abstract_inverted_index.cancer-relevant | 162 |
| abstract_inverted_index.dementia-progression | 200 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |