An intelligent IDS using bagging based fuzzy CNN for secured communication in vehicular networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-09633-4
Internet of Vehicles consists of vehicular nodes that communicate with each other for making intelligent transportation systems, where cyber physical attacks are increasing continuously. Intrusion Detection System (IDS) is able to provide a better security solution for minimizing such cyber physical attacks. Many existing IDSs developed using classification algorithms fail to provide the expected intrusion detection accuracy and they exhibit higher false positive rates. Hence, an efficient Feature Selection Algorithm named Weightage and Ranking Based Feature Selection Algorithm and a Bagging based Fuzzy Convolutional Neural Network classification algorithm with Adam optimizer are proposed in this article which are used to identify the attacks more effectively using bagging with fuzzy inference in the deep convolutional neural network classifier. The proposed system was tested using benchmark and network trace datasets and proved that the proposed IDS enhances the detection accuracy and reduces the false positive rate.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-025-09633-4
- https://www.nature.com/articles/s41598-025-09633-4.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 83
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412631818
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412631818Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-025-09633-4Digital Object Identifier
- Title
-
An intelligent IDS using bagging based fuzzy CNN for secured communication in vehicular networksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-24Full publication date if available
- Authors
-
M. Vijay Anand, S. MuthurajkumarList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-025-09633-4Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-025-09633-4.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-025-09633-4.pdfDirect OA link when available
- Concepts
-
Computer science, Fuzzy logic, Artificial intelligence, Data mining, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
83Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412631818 |
|---|---|
| doi | https://doi.org/10.1038/s41598-025-09633-4 |
| ids.doi | https://doi.org/10.1038/s41598-025-09633-4 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40707528 |
| ids.openalex | https://openalex.org/W4412631818 |
| fwci | 5.16502407 |
| type | article |
| title | An intelligent IDS using bagging based fuzzy CNN for secured communication in vehicular networks |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 26952 |
| biblio.first_page | 26952 |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| topics[1].id | https://openalex.org/T11498 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9987000226974487 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Security in Wireless Sensor Networks |
| topics[2].id | https://openalex.org/T10761 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9976000189781189 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Vehicular Ad Hoc Networks (VANETs) |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7624491453170776 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C58166 |
| concepts[1].level | 2 |
| concepts[1].score | 0.48960286378860474 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q224821 |
| concepts[1].display_name | Fuzzy logic |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4605969190597534 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C124101348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3938817083835602 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[3].display_name | Data mining |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3882902264595032 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7624491453170776 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/fuzzy-logic |
| keywords[1].score | 0.48960286378860474 |
| keywords[1].display_name | Fuzzy logic |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.4605969190597534 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/data-mining |
| keywords[3].score | 0.3938817083835602 |
| keywords[3].display_name | Data mining |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.3882902264595032 |
| keywords[4].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1038/s41598-025-09633-4 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-025-09633-4.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-025-09633-4 |
| locations[1].id | pmid:40707528 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40707528 |
| locations[2].id | pmh:oai:doaj.org/article:b189ff8aacfc4949a0c715c21598a010 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 15, Iss 1, Pp 1-27 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/b189ff8aacfc4949a0c715c21598a010 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5101955854 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8457-9771 |
| authorships[0].author.display_name | M. Vijay Anand |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I24676775, https://openalex.org/I33585257 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Technology, Madras Institute of Technology, Anna University, Chennai, India. [email protected]. |
| authorships[0].institutions[0].id | https://openalex.org/I33585257 |
| authorships[0].institutions[0].ror | https://ror.org/01qhf1r47 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I33585257 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Anna University, Chennai |
| authorships[0].institutions[1].id | https://openalex.org/I24676775 |
| authorships[0].institutions[1].ror | https://ror.org/03v0r5n49 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I24676775 |
| authorships[0].institutions[1].country_code | IN |
| authorships[0].institutions[1].display_name | Indian Institute of Technology Madras |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | M Anand |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Technology, Madras Institute of Technology, Anna University, Chennai, India. [email protected]. |
| authorships[1].author.id | https://openalex.org/A5015813317 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | S. Muthurajkumar |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I24676775, https://openalex.org/I33585257 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Technology, Madras Institute of Technology, Anna University, Chennai, India. |
| authorships[1].institutions[0].id | https://openalex.org/I33585257 |
| authorships[1].institutions[0].ror | https://ror.org/01qhf1r47 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I33585257 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Anna University, Chennai |
| authorships[1].institutions[1].id | https://openalex.org/I24676775 |
| authorships[1].institutions[1].ror | https://ror.org/03v0r5n49 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I24676775 |
| authorships[1].institutions[1].country_code | IN |
| authorships[1].institutions[1].display_name | Indian Institute of Technology Madras |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | S Muthurajkumar |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Technology, Madras Institute of Technology, Anna University, Chennai, India. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-025-09633-4.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An intelligent IDS using bagging based fuzzy CNN for secured communication in vehicular networks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1038/s41598-025-09633-4 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-025-09633-4.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-025-09633-4 |
| primary_location.id | doi:10.1038/s41598-025-09633-4 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-025-09633-4.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-025-09633-4 |
| publication_date | 2025-07-24 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2902106343, https://openalex.org/W3087662407, https://openalex.org/W4289544857, https://openalex.org/W4296348886, https://openalex.org/W4401675889, https://openalex.org/W2958285686, https://openalex.org/W2995701838, https://openalex.org/W2911505293, https://openalex.org/W3202801741, https://openalex.org/W2951105308, https://openalex.org/W2903452648, https://openalex.org/W3134696756, https://openalex.org/W4224216588, https://openalex.org/W2590373591, https://openalex.org/W2945884086, https://openalex.org/W3184553632, https://openalex.org/W3017377715, https://openalex.org/W2002900768, https://openalex.org/W2601474892, https://openalex.org/W3006926329, https://openalex.org/W3117829857, https://openalex.org/W3157871125, https://openalex.org/W2902529532, https://openalex.org/W3203436613, https://openalex.org/W2156612354, https://openalex.org/W3135435077, https://openalex.org/W4296344711, https://openalex.org/W4388792450, https://openalex.org/W3217080078, https://openalex.org/W2089364633, https://openalex.org/W4386199455, https://openalex.org/W3117137387, https://openalex.org/W3048313003, https://openalex.org/W3189826552, https://openalex.org/W836876797, https://openalex.org/W2950250245, https://openalex.org/W3014732532, https://openalex.org/W2996900869, https://openalex.org/W3181232393, https://openalex.org/W3022218140, https://openalex.org/W4212984103, https://openalex.org/W2759043405, https://openalex.org/W3017080938, https://openalex.org/W3173665891, https://openalex.org/W3205323312, https://openalex.org/W2343841005, https://openalex.org/W3186193488, https://openalex.org/W3107031133, https://openalex.org/W2779598397, https://openalex.org/W3198200730, https://openalex.org/W3043530913, https://openalex.org/W3175217968, https://openalex.org/W2911278693, https://openalex.org/W2897600072, https://openalex.org/W2958489519, https://openalex.org/W3027374119, https://openalex.org/W2963203015, https://openalex.org/W3184304603, https://openalex.org/W3004777721, https://openalex.org/W3037143928, https://openalex.org/W4366978899, https://openalex.org/W2999733746, https://openalex.org/W3214003809, https://openalex.org/W4378675711, https://openalex.org/W4318261440, https://openalex.org/W4362703488, https://openalex.org/W4385986611, https://openalex.org/W4391883006, https://openalex.org/W4313315028, https://openalex.org/W1982180492, https://openalex.org/W1513075375, https://openalex.org/W4402023995, https://openalex.org/W4306827119, https://openalex.org/W4360910605, https://openalex.org/W3045657906, https://openalex.org/W2955202322, https://openalex.org/W4401981401, https://openalex.org/W2897238154, https://openalex.org/W3009709454, https://openalex.org/W4390603809, https://openalex.org/W2099940443, https://openalex.org/W4411078479, https://openalex.org/W3101894954 |
| referenced_works_count | 83 |
| abstract_inverted_index.a | 32, 79 |
| abstract_inverted_index.an | 65 |
| abstract_inverted_index.in | 93, 110 |
| abstract_inverted_index.is | 28 |
| abstract_inverted_index.of | 1, 4 |
| abstract_inverted_index.to | 30, 50, 99 |
| abstract_inverted_index.IDS | 133 |
| abstract_inverted_index.The | 117 |
| abstract_inverted_index.and | 57, 72, 78, 124, 128, 138 |
| abstract_inverted_index.are | 21, 91, 97 |
| abstract_inverted_index.for | 12, 36 |
| abstract_inverted_index.the | 52, 101, 111, 131, 135, 140 |
| abstract_inverted_index.was | 120 |
| abstract_inverted_index.Adam | 89 |
| abstract_inverted_index.IDSs | 44 |
| abstract_inverted_index.Many | 42 |
| abstract_inverted_index.able | 29 |
| abstract_inverted_index.deep | 112 |
| abstract_inverted_index.each | 10 |
| abstract_inverted_index.fail | 49 |
| abstract_inverted_index.more | 103 |
| abstract_inverted_index.such | 38 |
| abstract_inverted_index.that | 7, 130 |
| abstract_inverted_index.they | 58 |
| abstract_inverted_index.this | 94 |
| abstract_inverted_index.used | 98 |
| abstract_inverted_index.with | 9, 88, 107 |
| abstract_inverted_index.(IDS) | 27 |
| abstract_inverted_index.Based | 74 |
| abstract_inverted_index.Fuzzy | 82 |
| abstract_inverted_index.based | 81 |
| abstract_inverted_index.cyber | 18, 39 |
| abstract_inverted_index.false | 61, 141 |
| abstract_inverted_index.fuzzy | 108 |
| abstract_inverted_index.named | 70 |
| abstract_inverted_index.nodes | 6 |
| abstract_inverted_index.other | 11 |
| abstract_inverted_index.rate. | 143 |
| abstract_inverted_index.trace | 126 |
| abstract_inverted_index.using | 46, 105, 122 |
| abstract_inverted_index.where | 17 |
| abstract_inverted_index.which | 96 |
| abstract_inverted_index.Hence, | 64 |
| abstract_inverted_index.Neural | 84 |
| abstract_inverted_index.System | 26 |
| abstract_inverted_index.better | 33 |
| abstract_inverted_index.higher | 60 |
| abstract_inverted_index.making | 13 |
| abstract_inverted_index.neural | 114 |
| abstract_inverted_index.proved | 129 |
| abstract_inverted_index.rates. | 63 |
| abstract_inverted_index.system | 119 |
| abstract_inverted_index.tested | 121 |
| abstract_inverted_index.Bagging | 80 |
| abstract_inverted_index.Feature | 67, 75 |
| abstract_inverted_index.Network | 85 |
| abstract_inverted_index.Ranking | 73 |
| abstract_inverted_index.article | 95 |
| abstract_inverted_index.attacks | 20, 102 |
| abstract_inverted_index.bagging | 106 |
| abstract_inverted_index.exhibit | 59 |
| abstract_inverted_index.network | 115, 125 |
| abstract_inverted_index.provide | 31, 51 |
| abstract_inverted_index.reduces | 139 |
| abstract_inverted_index.Internet | 0 |
| abstract_inverted_index.Vehicles | 2 |
| abstract_inverted_index.accuracy | 56, 137 |
| abstract_inverted_index.attacks. | 41 |
| abstract_inverted_index.consists | 3 |
| abstract_inverted_index.datasets | 127 |
| abstract_inverted_index.enhances | 134 |
| abstract_inverted_index.existing | 43 |
| abstract_inverted_index.expected | 53 |
| abstract_inverted_index.identify | 100 |
| abstract_inverted_index.physical | 19, 40 |
| abstract_inverted_index.positive | 62, 142 |
| abstract_inverted_index.proposed | 92, 118, 132 |
| abstract_inverted_index.security | 34 |
| abstract_inverted_index.solution | 35 |
| abstract_inverted_index.systems, | 16 |
| abstract_inverted_index.Algorithm | 69, 77 |
| abstract_inverted_index.Detection | 25 |
| abstract_inverted_index.Intrusion | 24 |
| abstract_inverted_index.Selection | 68, 76 |
| abstract_inverted_index.Weightage | 71 |
| abstract_inverted_index.algorithm | 87 |
| abstract_inverted_index.benchmark | 123 |
| abstract_inverted_index.detection | 55, 136 |
| abstract_inverted_index.developed | 45 |
| abstract_inverted_index.efficient | 66 |
| abstract_inverted_index.inference | 109 |
| abstract_inverted_index.intrusion | 54 |
| abstract_inverted_index.optimizer | 90 |
| abstract_inverted_index.vehicular | 5 |
| abstract_inverted_index.algorithms | 48 |
| abstract_inverted_index.increasing | 22 |
| abstract_inverted_index.minimizing | 37 |
| abstract_inverted_index.classifier. | 116 |
| abstract_inverted_index.communicate | 8 |
| abstract_inverted_index.effectively | 104 |
| abstract_inverted_index.intelligent | 14 |
| abstract_inverted_index.Convolutional | 83 |
| abstract_inverted_index.continuously. | 23 |
| abstract_inverted_index.convolutional | 113 |
| abstract_inverted_index.classification | 47, 86 |
| abstract_inverted_index.transportation | 15 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.9135098 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |