An Intelligent Optimization Back-Analysis Method for Geomechanical Parameters in Underground Engineering Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/app12115761
The geomechanical parameters in underground engineering are usually difficult to determine, which can pose great obstacles in underground engineering. A novel displacement back-analysis method is proposed to determine the geomechanical parameters in underground engineering. In this method, the problem of geomechanical parameter determination is converted into an optimization problem, regarding the geomechanical parameters as the optimization parameters, and the error between the calculated results and the field measurement information as the optimization objective function. The grasshopper optimization algorithm (GOA), which offers excellent global optimization performance, and the Gaussian process regression (GPR) machine learning, offering powerful fitting ability, are combined to address the time-consuming numerical calculations. Furthermore, the proposed method is combined with the 3D numerical calculation software FLAC3D to form the GOA-GPR-FLAC3D method, which can be used in the displacement back-analysis of geomechanical parameters in underground engineering. The results of a case study show that the proposed method can greatly improve computational efficiency while ensuring high precision compared with the GOA. When applied to the Tai’an Pumped Storage Power Station, this method can obtain more accurate results compared with the GOA under the same evaluation times and is more suitable for the back-analysis of rock parameters in underground engineering.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app12115761
- https://www.mdpi.com/2076-3417/12/11/5761/pdf?version=1654656887
- OA Status
- gold
- Cited By
- 7
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4281873286
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4281873286Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app12115761Digital Object Identifier
- Title
-
An Intelligent Optimization Back-Analysis Method for Geomechanical Parameters in Underground EngineeringWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-06Full publication date if available
- Authors
-
Jianhe Li, Weizhe Sun, Guoshao Su, Yan ZhangList of authors in order
- Landing page
-
https://doi.org/10.3390/app12115761Publisher landing page
- PDF URL
-
https://www.mdpi.com/2076-3417/12/11/5761/pdf?version=1654656887Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2076-3417/12/11/5761/pdf?version=1654656887Direct OA link when available
- Concepts
-
Computer science, Kriging, Displacement (psychology), Geotechnical engineering, Geology, Machine learning, Psychology, PsychotherapistTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 4, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4281873286 |
|---|---|
| doi | https://doi.org/10.3390/app12115761 |
| ids.doi | https://doi.org/10.3390/app12115761 |
| ids.openalex | https://openalex.org/W4281873286 |
| fwci | 1.37059174 |
| type | article |
| title | An Intelligent Optimization Back-Analysis Method for Geomechanical Parameters in Underground Engineering |
| biblio.issue | 11 |
| biblio.volume | 12 |
| biblio.last_page | 5761 |
| biblio.first_page | 5761 |
| topics[0].id | https://openalex.org/T12814 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9854999780654907 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Gaussian Processes and Bayesian Inference |
| topics[1].id | https://openalex.org/T12293 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.978600025177002 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Dam Engineering and Safety |
| topics[2].id | https://openalex.org/T11046 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9768999814987183 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2213 |
| topics[2].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[2].display_name | Geotechnical Engineering and Analysis |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5328918695449829 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C81692654 |
| concepts[1].level | 2 |
| concepts[1].score | 0.45421186089515686 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q225926 |
| concepts[1].display_name | Kriging |
| concepts[2].id | https://openalex.org/C107551265 |
| concepts[2].level | 2 |
| concepts[2].score | 0.43087637424468994 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1458245 |
| concepts[2].display_name | Displacement (psychology) |
| concepts[3].id | https://openalex.org/C187320778 |
| concepts[3].level | 1 |
| concepts[3].score | 0.32725876569747925 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1349130 |
| concepts[3].display_name | Geotechnical engineering |
| concepts[4].id | https://openalex.org/C127313418 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3167233169078827 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[4].display_name | Geology |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.09214353561401367 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C542102704 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q183257 |
| concepts[7].display_name | Psychotherapist |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5328918695449829 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/kriging |
| keywords[1].score | 0.45421186089515686 |
| keywords[1].display_name | Kriging |
| keywords[2].id | https://openalex.org/keywords/displacement |
| keywords[2].score | 0.43087637424468994 |
| keywords[2].display_name | Displacement (psychology) |
| keywords[3].id | https://openalex.org/keywords/geotechnical-engineering |
| keywords[3].score | 0.32725876569747925 |
| keywords[3].display_name | Geotechnical engineering |
| keywords[4].id | https://openalex.org/keywords/geology |
| keywords[4].score | 0.3167233169078827 |
| keywords[4].display_name | Geology |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.09214353561401367 |
| keywords[5].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.3390/app12115761 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2076-3417/12/11/5761/pdf?version=1654656887 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app12115761 |
| locations[1].id | pmh:oai:doaj.org/article:01eb17326f85459fbcb9ffaa98595829 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 12, Iss 11, p 5761 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/01eb17326f85459fbcb9ffaa98595829 |
| locations[2].id | pmh:oai:mdpi.com:/2076-3417/12/11/5761/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Applied Sciences; Volume 12; Issue 11; Pages: 5761 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/app12115761 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5081185599 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jianhe Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210136834 |
| authorships[0].affiliations[0].raw_affiliation_string | Guangxi Xinfazhan Transportation Group Co., Ltd., Nanning 530004, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210136834 |
| authorships[0].institutions[0].ror | https://ror.org/02w9cqe69 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210136834 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Guangxi Transportation Research Institute |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jianhe Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Guangxi Xinfazhan Transportation Group Co., Ltd., Nanning 530004, China |
| authorships[1].author.id | https://openalex.org/A5020082003 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4905-075X |
| authorships[1].author.display_name | Weizhe Sun |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I150807315 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China |
| authorships[1].institutions[0].id | https://openalex.org/I150807315 |
| authorships[1].institutions[0].ror | https://ror.org/02c9qn167 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I150807315 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Guangxi University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Weizhe Sun |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China |
| authorships[2].author.id | https://openalex.org/A5039750959 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9506-6827 |
| authorships[2].author.display_name | Guoshao Su |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I150807315 |
| authorships[2].affiliations[0].raw_affiliation_string | Guangxi Provincial Engineering Research Center of Water Security and Intelligent Control for Karst Region, Guangxi University, Nanning 530004, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I150807315 |
| authorships[2].affiliations[1].raw_affiliation_string | Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China |
| authorships[2].institutions[0].id | https://openalex.org/I150807315 |
| authorships[2].institutions[0].ror | https://ror.org/02c9qn167 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I150807315 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Guangxi University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Guoshao Su |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Guangxi Provincial Engineering Research Center of Water Security and Intelligent Control for Karst Region, Guangxi University, Nanning 530004, China, Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China |
| authorships[3].author.id | https://openalex.org/A5100456253 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4791-7081 |
| authorships[3].author.display_name | Yan Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I38706770 |
| authorships[3].affiliations[0].raw_affiliation_string | Guangxi Key Laboratory of Geomechanics and Geotechnical Engineering, College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541004, China |
| authorships[3].institutions[0].id | https://openalex.org/I38706770 |
| authorships[3].institutions[0].ror | https://ror.org/03z391397 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I38706770 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Guilin University of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yan Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Guangxi Key Laboratory of Geomechanics and Geotechnical Engineering, College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541004, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2076-3417/12/11/5761/pdf?version=1654656887 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Intelligent Optimization Back-Analysis Method for Geomechanical Parameters in Underground Engineering |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12814 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9854999780654907 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Gaussian Processes and Bayesian Inference |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W1968523686, https://openalex.org/W298893735, https://openalex.org/W2199291344, https://openalex.org/W2211316729, https://openalex.org/W2167342507, https://openalex.org/W4221140712, https://openalex.org/W4247222564, https://openalex.org/W3123323883 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/app12115761 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2076-3417/12/11/5761/pdf?version=1654656887 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app12115761 |
| primary_location.id | doi:10.3390/app12115761 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2076-3417/12/11/5761/pdf?version=1654656887 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app12115761 |
| publication_date | 2022-06-06 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2892746394, https://openalex.org/W2981571957, https://openalex.org/W2011688615, https://openalex.org/W2110744083, https://openalex.org/W1977396217, https://openalex.org/W2004335957, https://openalex.org/W2732499226, https://openalex.org/W1968156038, https://openalex.org/W83960822, https://openalex.org/W6647671216, https://openalex.org/W2048979223, https://openalex.org/W2013374428, https://openalex.org/W2051068668, https://openalex.org/W2067838704, https://openalex.org/W2007736590, https://openalex.org/W2752203326, https://openalex.org/W1857397206, https://openalex.org/W1919268587, https://openalex.org/W2096781596, https://openalex.org/W3010879889, https://openalex.org/W2513270527, https://openalex.org/W2585392941, https://openalex.org/W2944206991, https://openalex.org/W4206982556, https://openalex.org/W6929404466, https://openalex.org/W1925384340, https://openalex.org/W1502922572, https://openalex.org/W2789236616, https://openalex.org/W3019336851, https://openalex.org/W2014075432, https://openalex.org/W2239503372, https://openalex.org/W2604887496, https://openalex.org/W3010010025, https://openalex.org/W1988994477 |
| referenced_works_count | 34 |
| abstract_inverted_index.A | 19 |
| abstract_inverted_index.a | 140 |
| abstract_inverted_index.3D | 113 |
| abstract_inverted_index.In | 34 |
| abstract_inverted_index.an | 46 |
| abstract_inverted_index.as | 53, 69 |
| abstract_inverted_index.be | 125 |
| abstract_inverted_index.in | 3, 16, 31, 127, 134, 196 |
| abstract_inverted_index.is | 24, 43, 109, 187 |
| abstract_inverted_index.of | 39, 131, 139, 193 |
| abstract_inverted_index.to | 9, 26, 99, 118, 163 |
| abstract_inverted_index.GOA | 180 |
| abstract_inverted_index.The | 0, 74, 137 |
| abstract_inverted_index.and | 57, 64, 85, 186 |
| abstract_inverted_index.are | 6, 97 |
| abstract_inverted_index.can | 12, 124, 148, 172 |
| abstract_inverted_index.for | 190 |
| abstract_inverted_index.the | 28, 37, 50, 54, 58, 61, 65, 70, 86, 101, 106, 112, 120, 128, 145, 159, 164, 179, 182, 191 |
| abstract_inverted_index.GOA. | 160 |
| abstract_inverted_index.When | 161 |
| abstract_inverted_index.case | 141 |
| abstract_inverted_index.form | 119 |
| abstract_inverted_index.high | 155 |
| abstract_inverted_index.into | 45 |
| abstract_inverted_index.more | 174, 188 |
| abstract_inverted_index.pose | 13 |
| abstract_inverted_index.rock | 194 |
| abstract_inverted_index.same | 183 |
| abstract_inverted_index.show | 143 |
| abstract_inverted_index.that | 144 |
| abstract_inverted_index.this | 35, 170 |
| abstract_inverted_index.used | 126 |
| abstract_inverted_index.with | 111, 158, 178 |
| abstract_inverted_index.(GPR) | 90 |
| abstract_inverted_index.Power | 168 |
| abstract_inverted_index.error | 59 |
| abstract_inverted_index.field | 66 |
| abstract_inverted_index.great | 14 |
| abstract_inverted_index.novel | 20 |
| abstract_inverted_index.study | 142 |
| abstract_inverted_index.times | 185 |
| abstract_inverted_index.under | 181 |
| abstract_inverted_index.which | 11, 79, 123 |
| abstract_inverted_index.while | 153 |
| abstract_inverted_index.(GOA), | 78 |
| abstract_inverted_index.FLAC3D | 117 |
| abstract_inverted_index.Pumped | 166 |
| abstract_inverted_index.global | 82 |
| abstract_inverted_index.method | 23, 108, 147, 171 |
| abstract_inverted_index.obtain | 173 |
| abstract_inverted_index.offers | 80 |
| abstract_inverted_index.Storage | 167 |
| abstract_inverted_index.address | 100 |
| abstract_inverted_index.applied | 162 |
| abstract_inverted_index.between | 60 |
| abstract_inverted_index.fitting | 95 |
| abstract_inverted_index.greatly | 149 |
| abstract_inverted_index.improve | 150 |
| abstract_inverted_index.machine | 91 |
| abstract_inverted_index.method, | 36, 122 |
| abstract_inverted_index.problem | 38 |
| abstract_inverted_index.process | 88 |
| abstract_inverted_index.results | 63, 138, 176 |
| abstract_inverted_index.usually | 7 |
| abstract_inverted_index.Gaussian | 87 |
| abstract_inverted_index.Station, | 169 |
| abstract_inverted_index.Tai’an | 165 |
| abstract_inverted_index.ability, | 96 |
| abstract_inverted_index.accurate | 175 |
| abstract_inverted_index.combined | 98, 110 |
| abstract_inverted_index.compared | 157, 177 |
| abstract_inverted_index.ensuring | 154 |
| abstract_inverted_index.offering | 93 |
| abstract_inverted_index.powerful | 94 |
| abstract_inverted_index.problem, | 48 |
| abstract_inverted_index.proposed | 25, 107, 146 |
| abstract_inverted_index.software | 116 |
| abstract_inverted_index.suitable | 189 |
| abstract_inverted_index.algorithm | 77 |
| abstract_inverted_index.converted | 44 |
| abstract_inverted_index.determine | 27 |
| abstract_inverted_index.difficult | 8 |
| abstract_inverted_index.excellent | 81 |
| abstract_inverted_index.function. | 73 |
| abstract_inverted_index.learning, | 92 |
| abstract_inverted_index.numerical | 103, 114 |
| abstract_inverted_index.objective | 72 |
| abstract_inverted_index.obstacles | 15 |
| abstract_inverted_index.parameter | 41 |
| abstract_inverted_index.precision | 156 |
| abstract_inverted_index.regarding | 49 |
| abstract_inverted_index.calculated | 62 |
| abstract_inverted_index.determine, | 10 |
| abstract_inverted_index.efficiency | 152 |
| abstract_inverted_index.evaluation | 184 |
| abstract_inverted_index.parameters | 2, 30, 52, 133, 195 |
| abstract_inverted_index.regression | 89 |
| abstract_inverted_index.calculation | 115 |
| abstract_inverted_index.engineering | 5 |
| abstract_inverted_index.grasshopper | 75 |
| abstract_inverted_index.information | 68 |
| abstract_inverted_index.measurement | 67 |
| abstract_inverted_index.parameters, | 56 |
| abstract_inverted_index.underground | 4, 17, 32, 135, 197 |
| abstract_inverted_index.Furthermore, | 105 |
| abstract_inverted_index.displacement | 21, 129 |
| abstract_inverted_index.engineering. | 18, 33, 136, 198 |
| abstract_inverted_index.optimization | 47, 55, 71, 76, 83 |
| abstract_inverted_index.performance, | 84 |
| abstract_inverted_index.back-analysis | 22, 130, 192 |
| abstract_inverted_index.calculations. | 104 |
| abstract_inverted_index.computational | 151 |
| abstract_inverted_index.determination | 42 |
| abstract_inverted_index.geomechanical | 1, 29, 40, 51, 132 |
| abstract_inverted_index.GOA-GPR-FLAC3D | 121 |
| abstract_inverted_index.time-consuming | 102 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5039750959 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I150807315 |
| citation_normalized_percentile.value | 0.79808829 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |