An intra- and inter-class context and consistency network for supervised and semi-supervised blastocyst segmentation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-19155-8
The implantation potential of an embryo is intricately linked to the quality of its blastocyst. Consequently, achieving an objective and precise identification of blastocyst morphology is imperative. The purpose of this study is to focus on the structural associations between all tissues of blastocysts, and explore the possibility of semi-supervised learning (SSL) for blastocyst segmentation, so as to further improve the segmentation performance of blastocyst tissues. In this paper, we present a framework named I2C2Net for the automatic segmentation of blastocysts in human embryo images, leveraging both supervised and semi-supervised learning approaches. I2C2Net consists of three key components: the Intra-Class Context Module (IACCM), the Inter-Class Context Module (IRCCM), and the Consistency Module (CM). The IACCM aggregates pixel representations within specific category areas, learning categorized regions relative to ground truth labels. This aggregation then decomposes a K-category recognition task into two tasks, each with distinct labels, while retaining the ability to learn intra-class features. The design of the IRCCM is informed by blastocyst morphology, capturing inter-class information on blastocyst tissues as they develop from inner to outer layers. Additionally, we introduce a consistency module for supervised training, enhancing the model's ability to learn the original data distribution and improve recognition accuracy without increased computational burden. Furthermore, to address the scarcity of annotated data and meet clinical demands, we propose a semi-supervised version of I2C2Net based on the semantic consistency assumption and cluster assumption across heterogeneous domains. The ablation experimental results validate the effectiveness of our proposed IACCM, IRCCM, and CM modules. Compared to other supervised methods, our I2C2Net achieves state-of-the-art performance in terms of Accuracy, Precision, Recall, Dice coefficient, and Jaccard index, which are [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], respectively. Moreover, our semi-supervised version of I2C2Net achieves the best performance among other popular SSL approaches. Specifically, our model gains at least a [Formula: see text] rise in Accuracy, [Formula: see text] rise in Precision, [Formula: see text] rise in Dice coefficient, and [Formula: see text] rise in Jaccard index. The quantitative and qualitative experimental results showcase the superiority of our model over other representative supervised and semi-supervised methods on the blastocyst public dataset.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-025-19155-8
- https://www.nature.com/articles/s41598-025-19155-8.pdf
- OA Status
- gold
- References
- 53
- OpenAlex ID
- https://openalex.org/W4414994224
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414994224Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-025-19155-8Digital Object Identifier
- Title
-
An intra- and inter-class context and consistency network for supervised and semi-supervised blastocyst segmentationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-09Full publication date if available
- Authors
-
Hua Wang, Linwei Qiu, Jingfei Hu, Guang Wu, Hui-Ming Zou, Zhiguo Zhang, Jicong ZhangList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-025-19155-8Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-025-19155-8.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-025-19155-8.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
53Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414994224 |
|---|---|
| doi | https://doi.org/10.1038/s41598-025-19155-8 |
| ids.doi | https://doi.org/10.1038/s41598-025-19155-8 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41068199 |
| ids.openalex | https://openalex.org/W4414994224 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | Q000166 |
| mesh[0].descriptor_ui | D001755 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | cytology |
| mesh[0].descriptor_name | Blastocyst |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D005307 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Fertilization in Vitro |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000069553 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Supervised Machine Learning |
| mesh[3].qualifier_ui | Q000166 |
| mesh[3].descriptor_ui | D053624 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | cytology |
| mesh[3].descriptor_name | Blastocyst Inner Cell Mass |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D015044 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Zona Pellucida |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D066264 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Datasets as Topic |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | Q000166 |
| mesh[7].descriptor_ui | D001755 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | cytology |
| mesh[7].descriptor_name | Blastocyst |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D006801 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Humans |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000069553 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Supervised Machine Learning |
| mesh[10].qualifier_ui | Q000379 |
| mesh[10].descriptor_ui | D007091 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | methods |
| mesh[10].descriptor_name | Image Processing, Computer-Assisted |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000465 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Algorithms |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D005260 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Female |
| mesh[13].qualifier_ui | Q000166 |
| mesh[13].descriptor_ui | D001755 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | cytology |
| mesh[13].descriptor_name | Blastocyst |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D006801 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Humans |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D000069553 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Supervised Machine Learning |
| mesh[16].qualifier_ui | Q000379 |
| mesh[16].descriptor_ui | D007091 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | methods |
| mesh[16].descriptor_name | Image Processing, Computer-Assisted |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000465 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Algorithms |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D005260 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Female |
| type | article |
| title | An intra- and inter-class context and consistency network for supervised and semi-supervised blastocyst segmentation |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 35286 |
| biblio.first_page | 35286 |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9563000202178955 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T10616 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9387000203132629 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Smart Agriculture and AI |
| topics[2].id | https://openalex.org/T11164 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9333999752998352 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Remote Sensing and LiDAR Applications |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| language | en |
| locations[0].id | doi:10.1038/s41598-025-19155-8 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-025-19155-8.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-025-19155-8 |
| locations[1].id | pmid:41068199 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41068199 |
| locations[2].id | pmh:oai:doaj.org/article:0ef4c39f41814e08b24cb7ec2de40473 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 15, Iss 1, Pp 1-18 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/0ef4c39f41814e08b24cb7ec2de40473 |
| locations[3].id | pmh:oai:europepmc.org:11319238 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12511380 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100403969 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8465-0996 |
| authorships[0].author.display_name | Hua Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210135175, https://openalex.org/I82880672 |
| authorships[0].affiliations[0].raw_affiliation_string | Hefei Innovation Research Institute, Beihang University, Hefei, China |
| authorships[0].institutions[0].id | https://openalex.org/I82880672 |
| authorships[0].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beihang University |
| authorships[0].institutions[1].id | https://openalex.org/I4210135175 |
| authorships[0].institutions[1].ror | https://ror.org/044wmmj34 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210135175 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Hefei Institute of Technology Innovation |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hua Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Hefei Innovation Research Institute, Beihang University, Hefei, China |
| authorships[1].author.id | https://openalex.org/A5011916547 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9083-7266 |
| authorships[1].author.display_name | Linwei Qiu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Biological Science and Medical Engineering, Beihang University, Beijing, China |
| authorships[1].institutions[0].id | https://openalex.org/I82880672 |
| authorships[1].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beihang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Linwei Qiu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Biological Science and Medical Engineering, Beihang University, Beijing, China |
| authorships[2].author.id | https://openalex.org/A5013521351 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2300-1570 |
| authorships[2].author.display_name | Jingfei Hu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I253932293 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Medical Informatics Engineering, Anhui University of Traditional Chinese Medicine, Hefei, China |
| authorships[2].institutions[0].id | https://openalex.org/I253932293 |
| authorships[2].institutions[0].ror | https://ror.org/0139j4p80 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I253932293 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Anhui University of Traditional Chinese Medicine |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jingfei Hu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Medical Informatics Engineering, Anhui University of Traditional Chinese Medicine, Hefei, China |
| authorships[3].author.id | https://openalex.org/A5046659139 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9855-1561 |
| authorships[3].author.display_name | Guang Wu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210135175, https://openalex.org/I82880672 |
| authorships[3].affiliations[0].raw_affiliation_string | Hefei Innovation Research Institute, Beihang University, Hefei, China |
| authorships[3].institutions[0].id | https://openalex.org/I82880672 |
| authorships[3].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beihang University |
| authorships[3].institutions[1].id | https://openalex.org/I4210135175 |
| authorships[3].institutions[1].ror | https://ror.org/044wmmj34 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210135175 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Hefei Institute of Technology Innovation |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Guang Wu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Hefei Innovation Research Institute, Beihang University, Hefei, China |
| authorships[4].author.id | https://openalex.org/A5113699539 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Hui-Ming Zou |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I197869895, https://openalex.org/I4210136596 |
| authorships[4].affiliations[0].raw_affiliation_string | Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China |
| authorships[4].institutions[0].id | https://openalex.org/I197869895 |
| authorships[4].institutions[0].ror | https://ror.org/03xb04968 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I197869895 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Anhui Medical University |
| authorships[4].institutions[1].id | https://openalex.org/I4210136596 |
| authorships[4].institutions[1].ror | https://ror.org/03t1yn780 |
| authorships[4].institutions[1].type | healthcare |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210136596 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | First Affiliated Hospital of Anhui Medical University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Huijuan Zou |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China |
| authorships[5].author.id | https://openalex.org/A5100363364 |
| authorships[5].author.orcid | https://orcid.org/0009-0004-7353-7420 |
| authorships[5].author.display_name | Zhiguo Zhang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I197869895, https://openalex.org/I4210136596 |
| authorships[5].affiliations[0].raw_affiliation_string | Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China |
| authorships[5].institutions[0].id | https://openalex.org/I197869895 |
| authorships[5].institutions[0].ror | https://ror.org/03xb04968 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I197869895 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Anhui Medical University |
| authorships[5].institutions[1].id | https://openalex.org/I4210136596 |
| authorships[5].institutions[1].ror | https://ror.org/03t1yn780 |
| authorships[5].institutions[1].type | healthcare |
| authorships[5].institutions[1].lineage | https://openalex.org/I4210136596 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | First Affiliated Hospital of Anhui Medical University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhiguo Zhang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China |
| authorships[6].author.id | https://openalex.org/A5075102795 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3325-5371 |
| authorships[6].author.display_name | Jicong Zhang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210135175, https://openalex.org/I82880672 |
| authorships[6].affiliations[0].raw_affiliation_string | Hefei Innovation Research Institute, Beihang University, Hefei, China |
| authorships[6].institutions[0].id | https://openalex.org/I82880672 |
| authorships[6].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Beihang University |
| authorships[6].institutions[1].id | https://openalex.org/I4210135175 |
| authorships[6].institutions[1].ror | https://ror.org/044wmmj34 |
| authorships[6].institutions[1].type | facility |
| authorships[6].institutions[1].lineage | https://openalex.org/I4210135175 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Hefei Institute of Technology Innovation |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Jicong Zhang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Hefei Innovation Research Institute, Beihang University, Hefei, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-025-19155-8.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An intra- and inter-class context and consistency network for supervised and semi-supervised blastocyst segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9563000202178955 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-025-19155-8 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-025-19155-8.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-025-19155-8 |
| primary_location.id | doi:10.1038/s41598-025-19155-8 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-025-19155-8.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-025-19155-8 |
| publication_date | 2025-10-09 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2170141366, https://openalex.org/W4249402732, https://openalex.org/W1901129140, https://openalex.org/W3044055485, https://openalex.org/W4411245290, https://openalex.org/W3109301572, https://openalex.org/W4221160648, https://openalex.org/W2136147706, https://openalex.org/W2430565741, https://openalex.org/W2112198083, https://openalex.org/W1996220077, https://openalex.org/W2790535226, https://openalex.org/W2761920516, https://openalex.org/W2547633761, https://openalex.org/W2789637520, https://openalex.org/W3093457004, https://openalex.org/W2891620998, https://openalex.org/W2970992367, https://openalex.org/W1990334093, https://openalex.org/W3034845783, https://openalex.org/W2768975974, https://openalex.org/W4221161877, https://openalex.org/W2979907638, https://openalex.org/W4200195652, https://openalex.org/W2995808743, https://openalex.org/W3172949220, https://openalex.org/W3083779147, https://openalex.org/W2966415767, https://openalex.org/W3157653192, https://openalex.org/W2778764040, https://openalex.org/W2750925197, https://openalex.org/W2593414223, https://openalex.org/W4206744857, https://openalex.org/W1808966389, https://openalex.org/W1909740415, https://openalex.org/W2884436604, https://openalex.org/W2912989244, https://openalex.org/W3092344722, https://openalex.org/W3015788359, https://openalex.org/W2964309882, https://openalex.org/W1903029394, https://openalex.org/W2955058313, https://openalex.org/W2981689412, https://openalex.org/W2560023338, https://openalex.org/W4390189283, https://openalex.org/W4388336704, https://openalex.org/W3187378100, https://openalex.org/W3197957534, https://openalex.org/W3203480968, https://openalex.org/W3170841864, https://openalex.org/W4382404966, https://openalex.org/W4386075981, https://openalex.org/W2987426172 |
| referenced_works_count | 53 |
| abstract_inverted_index.a | 71, 134, 180, 218, 310 |
| abstract_inverted_index.CM | 248 |
| abstract_inverted_index.In | 66 |
| abstract_inverted_index.an | 4, 17 |
| abstract_inverted_index.as | 56, 169 |
| abstract_inverted_index.at | 308 |
| abstract_inverted_index.by | 160 |
| abstract_inverted_index.in | 81, 260, 315, 321, 327, 335 |
| abstract_inverted_index.is | 6, 25, 32, 158 |
| abstract_inverted_index.of | 3, 12, 22, 29, 42, 48, 63, 79, 94, 155, 209, 221, 242, 262, 293, 347 |
| abstract_inverted_index.on | 35, 166, 224, 357 |
| abstract_inverted_index.so | 55 |
| abstract_inverted_index.to | 9, 33, 57, 126, 149, 174, 190, 205, 251 |
| abstract_inverted_index.we | 69, 178, 216 |
| abstract_inverted_index.SSL | 302 |
| abstract_inverted_index.The | 0, 27, 113, 153, 235, 338 |
| abstract_inverted_index.all | 40 |
| abstract_inverted_index.and | 19, 44, 88, 108, 196, 212, 229, 247, 268, 330, 340, 354 |
| abstract_inverted_index.are | 272 |
| abstract_inverted_index.for | 52, 75, 183 |
| abstract_inverted_index.its | 13 |
| abstract_inverted_index.key | 96 |
| abstract_inverted_index.our | 243, 255, 290, 305, 348 |
| abstract_inverted_index.see | 274, 277, 280, 283, 286, 312, 318, 324, 332 |
| abstract_inverted_index.the | 10, 36, 46, 60, 76, 98, 103, 109, 147, 156, 187, 192, 207, 225, 240, 296, 345, 358 |
| abstract_inverted_index.two | 139 |
| abstract_inverted_index.Dice | 266, 328 |
| abstract_inverted_index.This | 130 |
| abstract_inverted_index.best | 297 |
| abstract_inverted_index.both | 86 |
| abstract_inverted_index.data | 194, 211 |
| abstract_inverted_index.each | 141 |
| abstract_inverted_index.from | 172 |
| abstract_inverted_index.into | 138 |
| abstract_inverted_index.meet | 213 |
| abstract_inverted_index.over | 350 |
| abstract_inverted_index.rise | 314, 320, 326, 334 |
| abstract_inverted_index.task | 137 |
| abstract_inverted_index.then | 132 |
| abstract_inverted_index.they | 170 |
| abstract_inverted_index.this | 30, 67 |
| abstract_inverted_index.with | 142 |
| abstract_inverted_index.(CM). | 112 |
| abstract_inverted_index.(SSL) | 51 |
| abstract_inverted_index.IACCM | 114 |
| abstract_inverted_index.IRCCM | 157 |
| abstract_inverted_index.among | 299 |
| abstract_inverted_index.based | 223 |
| abstract_inverted_index.focus | 34 |
| abstract_inverted_index.gains | 307 |
| abstract_inverted_index.human | 82 |
| abstract_inverted_index.inner | 173 |
| abstract_inverted_index.learn | 150, 191 |
| abstract_inverted_index.least | 309 |
| abstract_inverted_index.model | 306, 349 |
| abstract_inverted_index.named | 73 |
| abstract_inverted_index.other | 252, 300, 351 |
| abstract_inverted_index.outer | 175 |
| abstract_inverted_index.pixel | 116 |
| abstract_inverted_index.study | 31 |
| abstract_inverted_index.terms | 261 |
| abstract_inverted_index.text] | 313, 319, 325, 333 |
| abstract_inverted_index.three | 95 |
| abstract_inverted_index.truth | 128 |
| abstract_inverted_index.which | 271 |
| abstract_inverted_index.while | 145 |
| abstract_inverted_index.IACCM, | 245 |
| abstract_inverted_index.IRCCM, | 246 |
| abstract_inverted_index.Module | 101, 106, 111 |
| abstract_inverted_index.across | 232 |
| abstract_inverted_index.areas, | 121 |
| abstract_inverted_index.design | 154 |
| abstract_inverted_index.embryo | 5, 83 |
| abstract_inverted_index.ground | 127 |
| abstract_inverted_index.index, | 270 |
| abstract_inverted_index.index. | 337 |
| abstract_inverted_index.linked | 8 |
| abstract_inverted_index.module | 182 |
| abstract_inverted_index.paper, | 68 |
| abstract_inverted_index.public | 360 |
| abstract_inverted_index.tasks, | 140 |
| abstract_inverted_index.text], | 275, 278, 281, 284, 287 |
| abstract_inverted_index.within | 118 |
| abstract_inverted_index.Context | 100, 105 |
| abstract_inverted_index.I2C2Net | 74, 92, 222, 256, 294 |
| abstract_inverted_index.Jaccard | 269, 336 |
| abstract_inverted_index.Recall, | 265 |
| abstract_inverted_index.ability | 148, 189 |
| abstract_inverted_index.address | 206 |
| abstract_inverted_index.between | 39 |
| abstract_inverted_index.burden. | 203 |
| abstract_inverted_index.cluster | 230 |
| abstract_inverted_index.develop | 171 |
| abstract_inverted_index.explore | 45 |
| abstract_inverted_index.further | 58 |
| abstract_inverted_index.images, | 84 |
| abstract_inverted_index.improve | 59, 197 |
| abstract_inverted_index.labels, | 144 |
| abstract_inverted_index.labels. | 129 |
| abstract_inverted_index.layers. | 176 |
| abstract_inverted_index.methods | 356 |
| abstract_inverted_index.model's | 188 |
| abstract_inverted_index.popular | 301 |
| abstract_inverted_index.precise | 20 |
| abstract_inverted_index.present | 70 |
| abstract_inverted_index.propose | 217 |
| abstract_inverted_index.purpose | 28 |
| abstract_inverted_index.quality | 11 |
| abstract_inverted_index.regions | 124 |
| abstract_inverted_index.results | 238, 343 |
| abstract_inverted_index.tissues | 41, 168 |
| abstract_inverted_index.version | 220, 292 |
| abstract_inverted_index.without | 200 |
| abstract_inverted_index.(IACCM), | 102 |
| abstract_inverted_index.(IRCCM), | 107 |
| abstract_inverted_index.Compared | 250 |
| abstract_inverted_index.ablation | 236 |
| abstract_inverted_index.accuracy | 199 |
| abstract_inverted_index.achieves | 257, 295 |
| abstract_inverted_index.category | 120 |
| abstract_inverted_index.clinical | 214 |
| abstract_inverted_index.consists | 93 |
| abstract_inverted_index.dataset. | 361 |
| abstract_inverted_index.demands, | 215 |
| abstract_inverted_index.distinct | 143 |
| abstract_inverted_index.domains. | 234 |
| abstract_inverted_index.informed | 159 |
| abstract_inverted_index.learning | 50, 90, 122 |
| abstract_inverted_index.methods, | 254 |
| abstract_inverted_index.modules. | 249 |
| abstract_inverted_index.original | 193 |
| abstract_inverted_index.proposed | 244 |
| abstract_inverted_index.relative | 125 |
| abstract_inverted_index.scarcity | 208 |
| abstract_inverted_index.semantic | 226 |
| abstract_inverted_index.showcase | 344 |
| abstract_inverted_index.specific | 119 |
| abstract_inverted_index.tissues. | 65 |
| abstract_inverted_index.validate | 239 |
| abstract_inverted_index.Accuracy, | 263, 316 |
| abstract_inverted_index.Moreover, | 289 |
| abstract_inverted_index.[Formula: | 273, 276, 279, 282, 285, 311, 317, 323, 331 |
| abstract_inverted_index.achieving | 16 |
| abstract_inverted_index.annotated | 210 |
| abstract_inverted_index.automatic | 77 |
| abstract_inverted_index.capturing | 163 |
| abstract_inverted_index.enhancing | 186 |
| abstract_inverted_index.features. | 152 |
| abstract_inverted_index.framework | 72 |
| abstract_inverted_index.increased | 201 |
| abstract_inverted_index.introduce | 179 |
| abstract_inverted_index.objective | 18 |
| abstract_inverted_index.potential | 2 |
| abstract_inverted_index.retaining | 146 |
| abstract_inverted_index.training, | 185 |
| abstract_inverted_index.K-category | 135 |
| abstract_inverted_index.Precision, | 264, 322 |
| abstract_inverted_index.aggregates | 115 |
| abstract_inverted_index.assumption | 228, 231 |
| abstract_inverted_index.blastocyst | 23, 53, 64, 161, 167, 359 |
| abstract_inverted_index.decomposes | 133 |
| abstract_inverted_index.leveraging | 85 |
| abstract_inverted_index.morphology | 24 |
| abstract_inverted_index.structural | 37 |
| abstract_inverted_index.supervised | 87, 184, 253, 353 |
| abstract_inverted_index.Consistency | 110 |
| abstract_inverted_index.Inter-Class | 104 |
| abstract_inverted_index.Intra-Class | 99 |
| abstract_inverted_index.aggregation | 131 |
| abstract_inverted_index.approaches. | 91, 303 |
| abstract_inverted_index.blastocyst. | 14 |
| abstract_inverted_index.blastocysts | 80 |
| abstract_inverted_index.categorized | 123 |
| abstract_inverted_index.components: | 97 |
| abstract_inverted_index.consistency | 181, 227 |
| abstract_inverted_index.imperative. | 26 |
| abstract_inverted_index.information | 165 |
| abstract_inverted_index.inter-class | 164 |
| abstract_inverted_index.intra-class | 151 |
| abstract_inverted_index.intricately | 7 |
| abstract_inverted_index.morphology, | 162 |
| abstract_inverted_index.performance | 62, 259, 298 |
| abstract_inverted_index.possibility | 47 |
| abstract_inverted_index.qualitative | 341 |
| abstract_inverted_index.recognition | 136, 198 |
| abstract_inverted_index.superiority | 346 |
| abstract_inverted_index.Furthermore, | 204 |
| abstract_inverted_index.associations | 38 |
| abstract_inverted_index.blastocysts, | 43 |
| abstract_inverted_index.coefficient, | 267, 329 |
| abstract_inverted_index.distribution | 195 |
| abstract_inverted_index.experimental | 237, 342 |
| abstract_inverted_index.implantation | 1 |
| abstract_inverted_index.quantitative | 339 |
| abstract_inverted_index.segmentation | 61, 78 |
| abstract_inverted_index.Additionally, | 177 |
| abstract_inverted_index.Consequently, | 15 |
| abstract_inverted_index.Specifically, | 304 |
| abstract_inverted_index.computational | 202 |
| abstract_inverted_index.effectiveness | 241 |
| abstract_inverted_index.heterogeneous | 233 |
| abstract_inverted_index.respectively. | 288 |
| abstract_inverted_index.segmentation, | 54 |
| abstract_inverted_index.identification | 21 |
| abstract_inverted_index.representative | 352 |
| abstract_inverted_index.representations | 117 |
| abstract_inverted_index.semi-supervised | 49, 89, 219, 291, 355 |
| abstract_inverted_index.state-of-the-art | 258 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.21518067 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |