An Intrusion Detection Method Based on Symmetric Federated Deep Learning in Complex Networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/sym17060952
The rapid development of the current 5G/6G network has added tremendous pressure to traditional security detection in the scenario of dealing with large-scale network attacks, resulting in high time complexity and low efficiency of attack identification. According to the deep network and its symmetry principle, this paper proposes a complex network intrusion detection and recognition method based on symmetric federation optimization, named IDS, which aims to reduce the time complexity and improve the accuracy and efficiency of attack identification. By using a symmetric network UNet-based deep feature learning to reconstruct data and construct the input matrix, we optimize the federated deep learning algorithm with a symmetric auto-encoder to make it more suitable for a complex network environment. The experimental results demonstrate that the technology based on the symmetric network proposed in this paper possesses significant advantages in terms of intrusion detection accuracy and effectiveness, which can effectively identify network intrusion and improve the accuracy of current complex network intrusion detection. The proposed symmetric intrusion detection method not only solves the bottleneck of traditional detection methods and improves the training efficiency of the model, but it also provides a new idea and solution for network security research.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/sym17060952
- OA Status
- gold
- Cited By
- 1
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411383093
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411383093Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/sym17060952Digital Object Identifier
- Title
-
An Intrusion Detection Method Based on Symmetric Federated Deep Learning in Complex NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-15Full publication date if available
- Authors
-
Lei Wang, Xiaoquan Ren, Chun-Yi WuList of authors in order
- Landing page
-
https://doi.org/10.3390/sym17060952Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/sym17060952Direct OA link when available
- Concepts
-
Computer science, Intrusion detection system, Artificial intelligence, Data miningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411383093 |
|---|---|
| doi | https://doi.org/10.3390/sym17060952 |
| ids.doi | https://doi.org/10.3390/sym17060952 |
| ids.openalex | https://openalex.org/W4411383093 |
| fwci | 5.16502407 |
| type | article |
| title | An Intrusion Detection Method Based on Symmetric Federated Deep Learning in Complex Networks |
| biblio.issue | 6 |
| biblio.volume | 17 |
| biblio.last_page | 952 |
| biblio.first_page | 952 |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| topics[1].id | https://openalex.org/T11598 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9966999888420105 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Internet Traffic Analysis and Secure E-voting |
| topics[2].id | https://openalex.org/T11241 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9941999912261963 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Advanced Malware Detection Techniques |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7427352666854858 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C35525427 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5292508006095886 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q745881 |
| concepts[1].display_name | Intrusion detection system |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4796600639820099 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C124101348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.33906638622283936 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[3].display_name | Data mining |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7427352666854858 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/intrusion-detection-system |
| keywords[1].score | 0.5292508006095886 |
| keywords[1].display_name | Intrusion detection system |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.4796600639820099 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/data-mining |
| keywords[3].score | 0.33906638622283936 |
| keywords[3].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.3390/sym17060952 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S190787756 |
| locations[0].source.issn | 2073-8994 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2073-8994 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Symmetry |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Symmetry |
| locations[0].landing_page_url | https://doi.org/10.3390/sym17060952 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100435995 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7014-2149 |
| authorships[0].author.display_name | Lei Wang |
| authorships[0].affiliations[0].raw_affiliation_string | School of Artificial Intelligence and Big Data, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lei Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Artificial Intelligence and Big Data, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, China |
| authorships[1].author.id | https://openalex.org/A5110928507 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Xiaoquan Ren |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3045169105 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Science, Southern University of Science and Technology, Shenzhen 518055, China |
| authorships[1].institutions[0].id | https://openalex.org/I3045169105 |
| authorships[1].institutions[0].ror | https://ror.org/049tv2d57 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I3045169105 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Southern University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xuanrui Ren |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Science, Southern University of Science and Technology, Shenzhen 518055, China |
| authorships[2].author.id | https://openalex.org/A5054683234 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2952-8912 |
| authorships[2].author.display_name | Chun-Yi Wu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].raw_affiliation_string | JINSHAN Science & Technology (Group) Co., Ltd., Chongqing 401120, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I158842170 |
| authorships[2].affiliations[1].raw_affiliation_string | Chongqing Key Laboratory of Big Data Intelligence and Privacy Computing, Chongqing 401331, China |
| authorships[2].affiliations[2].raw_affiliation_string | School of Artificial Intelligence and Big Data, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, China |
| authorships[2].affiliations[3].institution_ids | https://openalex.org/I50632499 |
| authorships[2].affiliations[3].raw_affiliation_string | Big Data and Optimization Research Institute, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, China |
| authorships[2].affiliations[4].institution_ids | https://openalex.org/I150229711 |
| authorships[2].affiliations[4].raw_affiliation_string | School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
| authorships[2].institutions[0].id | https://openalex.org/I158842170 |
| authorships[2].institutions[0].ror | https://ror.org/023rhb549 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I158842170 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chongqing University |
| authorships[2].institutions[1].id | https://openalex.org/I50632499 |
| authorships[2].institutions[1].ror | https://ror.org/04vgbd477 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I50632499 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Chongqing University of Technology |
| authorships[2].institutions[2].id | https://openalex.org/I150229711 |
| authorships[2].institutions[2].ror | https://ror.org/04qr3zq92 |
| authorships[2].institutions[2].type | education |
| authorships[2].institutions[2].lineage | https://openalex.org/I150229711 |
| authorships[2].institutions[2].country_code | CN |
| authorships[2].institutions[2].display_name | University of Electronic Science and Technology of China |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Chunyi Wu |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Big Data and Optimization Research Institute, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, China, Chongqing Key Laboratory of Big Data Intelligence and Privacy Computing, Chongqing 401331, China, JINSHAN Science & Technology (Group) Co., Ltd., Chongqing 401120, China, School of Artificial Intelligence and Big Data, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, China, School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/sym17060952 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Intrusion Detection Method Based on Symmetric Federated Deep Learning in Complex Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W2364419519, https://openalex.org/W2360767377, https://openalex.org/W2017948608, https://openalex.org/W2360951146 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/sym17060952 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S190787756 |
| best_oa_location.source.issn | 2073-8994 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2073-8994 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Symmetry |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Symmetry |
| best_oa_location.landing_page_url | https://doi.org/10.3390/sym17060952 |
| primary_location.id | doi:10.3390/sym17060952 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S190787756 |
| primary_location.source.issn | 2073-8994 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2073-8994 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Symmetry |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Symmetry |
| primary_location.landing_page_url | https://doi.org/10.3390/sym17060952 |
| publication_date | 2025-06-15 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3183057945, https://openalex.org/W4386645116, https://openalex.org/W3000096704, https://openalex.org/W3125728023, https://openalex.org/W3178801469, https://openalex.org/W4309288251, https://openalex.org/W3127425528, https://openalex.org/W3136021864, https://openalex.org/W3151784567, https://openalex.org/W2991858542, https://openalex.org/W3129768586, https://openalex.org/W4213102562, https://openalex.org/W6791733528, https://openalex.org/W4321497442, https://openalex.org/W4220776964, https://openalex.org/W3198454468, https://openalex.org/W3039168097, https://openalex.org/W4409591291, https://openalex.org/W4205518274, https://openalex.org/W4327662601, https://openalex.org/W4383345489, https://openalex.org/W4402670850, https://openalex.org/W4393153054, https://openalex.org/W4353076821, https://openalex.org/W3092041085, https://openalex.org/W3092565864, https://openalex.org/W6680048697, https://openalex.org/W1481915258, https://openalex.org/W3119280225, https://openalex.org/W2133590498, https://openalex.org/W3136238191 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 48, 81, 104, 113, 187 |
| abstract_inverted_index.By | 79 |
| abstract_inverted_index.in | 16, 26, 130, 136 |
| abstract_inverted_index.it | 109, 184 |
| abstract_inverted_index.of | 3, 19, 33, 76, 138, 154, 171, 180 |
| abstract_inverted_index.on | 57, 125 |
| abstract_inverted_index.to | 12, 37, 65, 88, 107 |
| abstract_inverted_index.we | 96 |
| abstract_inverted_index.The | 0, 117, 160 |
| abstract_inverted_index.and | 30, 41, 53, 70, 74, 91, 142, 150, 175, 190 |
| abstract_inverted_index.but | 183 |
| abstract_inverted_index.can | 145 |
| abstract_inverted_index.for | 112, 192 |
| abstract_inverted_index.has | 8 |
| abstract_inverted_index.its | 42 |
| abstract_inverted_index.low | 31 |
| abstract_inverted_index.new | 188 |
| abstract_inverted_index.not | 166 |
| abstract_inverted_index.the | 4, 17, 38, 67, 72, 93, 98, 122, 126, 152, 169, 177, 181 |
| abstract_inverted_index.IDS, | 62 |
| abstract_inverted_index.aims | 64 |
| abstract_inverted_index.also | 185 |
| abstract_inverted_index.data | 90 |
| abstract_inverted_index.deep | 39, 85, 100 |
| abstract_inverted_index.high | 27 |
| abstract_inverted_index.idea | 189 |
| abstract_inverted_index.make | 108 |
| abstract_inverted_index.more | 110 |
| abstract_inverted_index.only | 167 |
| abstract_inverted_index.that | 121 |
| abstract_inverted_index.this | 45, 131 |
| abstract_inverted_index.time | 28, 68 |
| abstract_inverted_index.with | 21, 103 |
| abstract_inverted_index.5G/6G | 6 |
| abstract_inverted_index.added | 9 |
| abstract_inverted_index.based | 56, 124 |
| abstract_inverted_index.input | 94 |
| abstract_inverted_index.named | 61 |
| abstract_inverted_index.paper | 46, 132 |
| abstract_inverted_index.rapid | 1 |
| abstract_inverted_index.terms | 137 |
| abstract_inverted_index.using | 80 |
| abstract_inverted_index.which | 63, 144 |
| abstract_inverted_index.attack | 34, 77 |
| abstract_inverted_index.method | 55, 165 |
| abstract_inverted_index.model, | 182 |
| abstract_inverted_index.reduce | 66 |
| abstract_inverted_index.solves | 168 |
| abstract_inverted_index.complex | 49, 114, 156 |
| abstract_inverted_index.current | 5, 155 |
| abstract_inverted_index.dealing | 20 |
| abstract_inverted_index.feature | 86 |
| abstract_inverted_index.improve | 71, 151 |
| abstract_inverted_index.matrix, | 95 |
| abstract_inverted_index.methods | 174 |
| abstract_inverted_index.network | 7, 23, 40, 50, 83, 115, 128, 148, 157, 193 |
| abstract_inverted_index.results | 119 |
| abstract_inverted_index.accuracy | 73, 141, 153 |
| abstract_inverted_index.attacks, | 24 |
| abstract_inverted_index.identify | 147 |
| abstract_inverted_index.improves | 176 |
| abstract_inverted_index.learning | 87, 101 |
| abstract_inverted_index.optimize | 97 |
| abstract_inverted_index.pressure | 11 |
| abstract_inverted_index.proposed | 129, 161 |
| abstract_inverted_index.proposes | 47 |
| abstract_inverted_index.provides | 186 |
| abstract_inverted_index.scenario | 18 |
| abstract_inverted_index.security | 14, 194 |
| abstract_inverted_index.solution | 191 |
| abstract_inverted_index.suitable | 111 |
| abstract_inverted_index.symmetry | 43 |
| abstract_inverted_index.training | 178 |
| abstract_inverted_index.According | 36 |
| abstract_inverted_index.algorithm | 102 |
| abstract_inverted_index.construct | 92 |
| abstract_inverted_index.detection | 15, 52, 140, 164, 173 |
| abstract_inverted_index.federated | 99 |
| abstract_inverted_index.intrusion | 51, 139, 149, 158, 163 |
| abstract_inverted_index.possesses | 133 |
| abstract_inverted_index.research. | 195 |
| abstract_inverted_index.resulting | 25 |
| abstract_inverted_index.symmetric | 58, 82, 105, 127, 162 |
| abstract_inverted_index.UNet-based | 84 |
| abstract_inverted_index.advantages | 135 |
| abstract_inverted_index.bottleneck | 170 |
| abstract_inverted_index.complexity | 29, 69 |
| abstract_inverted_index.detection. | 159 |
| abstract_inverted_index.efficiency | 32, 75, 179 |
| abstract_inverted_index.federation | 59 |
| abstract_inverted_index.principle, | 44 |
| abstract_inverted_index.technology | 123 |
| abstract_inverted_index.tremendous | 10 |
| abstract_inverted_index.demonstrate | 120 |
| abstract_inverted_index.development | 2 |
| abstract_inverted_index.effectively | 146 |
| abstract_inverted_index.large-scale | 22 |
| abstract_inverted_index.recognition | 54 |
| abstract_inverted_index.reconstruct | 89 |
| abstract_inverted_index.significant | 134 |
| abstract_inverted_index.traditional | 13, 172 |
| abstract_inverted_index.auto-encoder | 106 |
| abstract_inverted_index.environment. | 116 |
| abstract_inverted_index.experimental | 118 |
| abstract_inverted_index.optimization, | 60 |
| abstract_inverted_index.effectiveness, | 143 |
| abstract_inverted_index.identification. | 35, 78 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5054683234 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I150229711, https://openalex.org/I158842170, https://openalex.org/I50632499 |
| citation_normalized_percentile.value | 0.90310884 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |