An investigation into the performances of the Current state-of-the-art Naive Bayes, Non-Bayesian and Deep Learning Based Classifier for Phishing Detection: A Survey Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.16751
Phishing is one of the most effective ways in which cybercriminals get sensitive details such as credentials for online banking, digital wallets, state secrets, and many more from potential victims. They do this by spamming users with malicious URLs with the sole purpose of tricking them into divulging sensitive information which is later used for various cybercrimes. In this research, we did a comprehensive review of current state-of-the-art machine learning and deep learning phishing detection techniques to expose their vulnerabilities and future research direction. For better analysis and observation, we split machine learning techniques into Bayesian, non-Bayesian, and deep learning. We reviewed the most recent advances in Bayesian and non-Bayesian-based classifiers before exploiting their corresponding weaknesses to indicate future research direction. While exploiting weaknesses in both Bayesian and non-Bayesian classifiers, we also compared each performance with a deep learning classifier. For a proper review of deep learning-based classifiers, we looked at Recurrent Neural Networks (RNN), Convolutional Neural Networks (CNN), and Long Short Term Memory Networks (LSTMs). We did an empirical analysis to evaluate the performance of each classifier along with many of the proposed state-of-the-art anti-phishing techniques to identify future research directions, we also made a series of proposals on how the performance of the under-performing algorithm can improved in addition to a two-stage prediction model
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.16751
- https://arxiv.org/pdf/2411.16751
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404988040
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404988040Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.16751Digital Object Identifier
- Title
-
An investigation into the performances of the Current state-of-the-art Naive Bayes, Non-Bayesian and Deep Learning Based Classifier for Phishing Detection: A SurveyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-24Full publication date if available
- Authors
-
Tosin Ige, Christopher Kiekintveld, Aritran Piplai, Amy Waggler, Olukunle Kolade, Bolanle Hafiz MattiList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.16751Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.16751Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.16751Direct OA link when available
- Concepts
-
Naive Bayes classifier, Artificial intelligence, Deep learning, Computer science, Machine learning, Bayesian probability, Classifier (UML), Bayes' theorem, Pattern recognition (psychology), Support vector machineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404988040 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.16751 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.16751 |
| ids.openalex | https://openalex.org/W4404988040 |
| fwci | |
| type | preprint |
| title | An investigation into the performances of the Current state-of-the-art Naive Bayes, Non-Bayesian and Deep Learning Based Classifier for Phishing Detection: A Survey |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11644 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Spam and Phishing Detection |
| topics[1].id | https://openalex.org/T10664 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9629999995231628 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Sentiment Analysis and Opinion Mining |
| topics[2].id | https://openalex.org/T11147 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9366999864578247 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3312 |
| topics[2].subfield.display_name | Sociology and Political Science |
| topics[2].display_name | Misinformation and Its Impacts |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C52001869 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8376295566558838 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q812530 |
| concepts[0].display_name | Naive Bayes classifier |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6610081791877747 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6200971603393555 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6050873398780823 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6011548042297363 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C107673813 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5248363614082336 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[5].display_name | Bayesian probability |
| concepts[6].id | https://openalex.org/C95623464 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4746861159801483 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[6].display_name | Classifier (UML) |
| concepts[7].id | https://openalex.org/C207201462 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4387877881526947 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q182505 |
| concepts[7].display_name | Bayes' theorem |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3410516381263733 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C12267149 |
| concepts[9].level | 2 |
| concepts[9].score | 0.18883123993873596 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[9].display_name | Support vector machine |
| keywords[0].id | https://openalex.org/keywords/naive-bayes-classifier |
| keywords[0].score | 0.8376295566558838 |
| keywords[0].display_name | Naive Bayes classifier |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6610081791877747 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.6200971603393555 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6050873398780823 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.6011548042297363 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/bayesian-probability |
| keywords[5].score | 0.5248363614082336 |
| keywords[5].display_name | Bayesian probability |
| keywords[6].id | https://openalex.org/keywords/classifier |
| keywords[6].score | 0.4746861159801483 |
| keywords[6].display_name | Classifier (UML) |
| keywords[7].id | https://openalex.org/keywords/bayes-theorem |
| keywords[7].score | 0.4387877881526947 |
| keywords[7].display_name | Bayes' theorem |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.3410516381263733 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/support-vector-machine |
| keywords[9].score | 0.18883123993873596 |
| keywords[9].display_name | Support vector machine |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.16751 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.16751 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.16751 |
| locations[1].id | doi:10.48550/arxiv.2411.16751 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.16751 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5007103197 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Tosin Ige |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ige, Tosin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5020091080 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0615-9584 |
| authorships[1].author.display_name | Christopher Kiekintveld |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kiekintveld, Christopher |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5014855298 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6437-1324 |
| authorships[2].author.display_name | Aritran Piplai |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Piplai, Aritran |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5114987989 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Amy Waggler |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Waggler, Amy |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5077082299 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Olukunle Kolade |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kolade, Olukunle |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5084787336 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Bolanle Hafiz Matti |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Matti, Bolanle Hafiz |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.16751 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An investigation into the performances of the Current state-of-the-art Naive Bayes, Non-Bayesian and Deep Learning Based Classifier for Phishing Detection: A Survey |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11644 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Spam and Phishing Detection |
| related_works | https://openalex.org/W4375867731, https://openalex.org/W2394466068, https://openalex.org/W1987683558, https://openalex.org/W2726838704, https://openalex.org/W2611989081, https://openalex.org/W4220802396, https://openalex.org/W2393473353, https://openalex.org/W2373790322, https://openalex.org/W2731899572, https://openalex.org/W2417174640 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.16751 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.16751 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.16751 |
| primary_location.id | pmh:oai:arXiv.org:2411.16751 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.16751 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.16751 |
| publication_date | 2024-11-24 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 62, 136, 141, 195, 212 |
| abstract_inverted_index.In | 57 |
| abstract_inverted_index.We | 100, 166 |
| abstract_inverted_index.an | 168 |
| abstract_inverted_index.as | 15 |
| abstract_inverted_index.at | 150 |
| abstract_inverted_index.by | 33 |
| abstract_inverted_index.do | 31 |
| abstract_inverted_index.in | 8, 106, 124, 209 |
| abstract_inverted_index.is | 1, 51 |
| abstract_inverted_index.of | 3, 43, 65, 144, 175, 181, 197, 203 |
| abstract_inverted_index.on | 199 |
| abstract_inverted_index.to | 76, 116, 171, 187, 211 |
| abstract_inverted_index.we | 60, 89, 130, 148, 192 |
| abstract_inverted_index.For | 84, 140 |
| abstract_inverted_index.and | 24, 70, 80, 87, 97, 108, 127, 159 |
| abstract_inverted_index.can | 207 |
| abstract_inverted_index.did | 61, 167 |
| abstract_inverted_index.for | 17, 54 |
| abstract_inverted_index.get | 11 |
| abstract_inverted_index.how | 200 |
| abstract_inverted_index.one | 2 |
| abstract_inverted_index.the | 4, 40, 102, 173, 182, 201, 204 |
| abstract_inverted_index.Long | 160 |
| abstract_inverted_index.Term | 162 |
| abstract_inverted_index.They | 30 |
| abstract_inverted_index.URLs | 38 |
| abstract_inverted_index.also | 131, 193 |
| abstract_inverted_index.both | 125 |
| abstract_inverted_index.deep | 71, 98, 137, 145 |
| abstract_inverted_index.each | 133, 176 |
| abstract_inverted_index.from | 27 |
| abstract_inverted_index.into | 46, 94 |
| abstract_inverted_index.made | 194 |
| abstract_inverted_index.many | 25, 180 |
| abstract_inverted_index.more | 26 |
| abstract_inverted_index.most | 5, 103 |
| abstract_inverted_index.sole | 41 |
| abstract_inverted_index.such | 14 |
| abstract_inverted_index.them | 45 |
| abstract_inverted_index.this | 32, 58 |
| abstract_inverted_index.used | 53 |
| abstract_inverted_index.ways | 7 |
| abstract_inverted_index.with | 36, 39, 135, 179 |
| abstract_inverted_index.Short | 161 |
| abstract_inverted_index.While | 121 |
| abstract_inverted_index.along | 178 |
| abstract_inverted_index.later | 52 |
| abstract_inverted_index.model | 215 |
| abstract_inverted_index.split | 90 |
| abstract_inverted_index.state | 22 |
| abstract_inverted_index.their | 78, 113 |
| abstract_inverted_index.users | 35 |
| abstract_inverted_index.which | 9, 50 |
| abstract_inverted_index.(CNN), | 158 |
| abstract_inverted_index.(RNN), | 154 |
| abstract_inverted_index.Memory | 163 |
| abstract_inverted_index.Neural | 152, 156 |
| abstract_inverted_index.before | 111 |
| abstract_inverted_index.better | 85 |
| abstract_inverted_index.expose | 77 |
| abstract_inverted_index.future | 81, 118, 189 |
| abstract_inverted_index.looked | 149 |
| abstract_inverted_index.online | 18 |
| abstract_inverted_index.proper | 142 |
| abstract_inverted_index.recent | 104 |
| abstract_inverted_index.review | 64, 143 |
| abstract_inverted_index.series | 196 |
| abstract_inverted_index.current | 66 |
| abstract_inverted_index.details | 13 |
| abstract_inverted_index.digital | 20 |
| abstract_inverted_index.machine | 68, 91 |
| abstract_inverted_index.purpose | 42 |
| abstract_inverted_index.various | 55 |
| abstract_inverted_index.(LSTMs). | 165 |
| abstract_inverted_index.Bayesian | 107, 126 |
| abstract_inverted_index.Networks | 153, 157, 164 |
| abstract_inverted_index.Phishing | 0 |
| abstract_inverted_index.addition | 210 |
| abstract_inverted_index.advances | 105 |
| abstract_inverted_index.analysis | 86, 170 |
| abstract_inverted_index.banking, | 19 |
| abstract_inverted_index.compared | 132 |
| abstract_inverted_index.evaluate | 172 |
| abstract_inverted_index.identify | 188 |
| abstract_inverted_index.improved | 208 |
| abstract_inverted_index.indicate | 117 |
| abstract_inverted_index.learning | 69, 72, 92, 138 |
| abstract_inverted_index.phishing | 73 |
| abstract_inverted_index.proposed | 183 |
| abstract_inverted_index.research | 82, 119, 190 |
| abstract_inverted_index.reviewed | 101 |
| abstract_inverted_index.secrets, | 23 |
| abstract_inverted_index.spamming | 34 |
| abstract_inverted_index.tricking | 44 |
| abstract_inverted_index.victims. | 29 |
| abstract_inverted_index.wallets, | 21 |
| abstract_inverted_index.Bayesian, | 95 |
| abstract_inverted_index.Recurrent | 151 |
| abstract_inverted_index.algorithm | 206 |
| abstract_inverted_index.detection | 74 |
| abstract_inverted_index.divulging | 47 |
| abstract_inverted_index.effective | 6 |
| abstract_inverted_index.empirical | 169 |
| abstract_inverted_index.learning. | 99 |
| abstract_inverted_index.malicious | 37 |
| abstract_inverted_index.potential | 28 |
| abstract_inverted_index.proposals | 198 |
| abstract_inverted_index.research, | 59 |
| abstract_inverted_index.sensitive | 12, 48 |
| abstract_inverted_index.two-stage | 213 |
| abstract_inverted_index.classifier | 177 |
| abstract_inverted_index.direction. | 83, 120 |
| abstract_inverted_index.exploiting | 112, 122 |
| abstract_inverted_index.prediction | 214 |
| abstract_inverted_index.techniques | 75, 93, 186 |
| abstract_inverted_index.weaknesses | 115, 123 |
| abstract_inverted_index.classifier. | 139 |
| abstract_inverted_index.classifiers | 110 |
| abstract_inverted_index.credentials | 16 |
| abstract_inverted_index.directions, | 191 |
| abstract_inverted_index.information | 49 |
| abstract_inverted_index.performance | 134, 174, 202 |
| abstract_inverted_index.classifiers, | 129, 147 |
| abstract_inverted_index.cybercrimes. | 56 |
| abstract_inverted_index.non-Bayesian | 128 |
| abstract_inverted_index.observation, | 88 |
| abstract_inverted_index.Convolutional | 155 |
| abstract_inverted_index.anti-phishing | 185 |
| abstract_inverted_index.comprehensive | 63 |
| abstract_inverted_index.corresponding | 114 |
| abstract_inverted_index.non-Bayesian, | 96 |
| abstract_inverted_index.cybercriminals | 10 |
| abstract_inverted_index.learning-based | 146 |
| abstract_inverted_index.vulnerabilities | 79 |
| abstract_inverted_index.state-of-the-art | 67, 184 |
| abstract_inverted_index.under-performing | 205 |
| abstract_inverted_index.non-Bayesian-based | 109 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |