An Investigation of Stochastic Variance Reduction Algorithms for Relative Difference Penalized 3D PET Image Reconstruction Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/tmi.2022.3203237
Penalised PET image reconstruction algorithms are often accelerated during early iterations with the use of subsets. However, these methods may exhibit limit cycle behaviour at later iterations due to variations between subsets. Desirable converged images can be achieved for a subclass of these algorithms via the implementation of a relaxed step size sequence, but the heuristic selection of parameters will impact the quality of the image sequence and algorithm convergence rates. In this work, we demonstrate the adaption and application of a class of stochastic variance reduction gradient algorithms for PET image reconstruction using the relative difference penalty and numerically compare convergence performance to BSREM. The two investigated algorithms are: SAGA and SVRG. These algorithms require the retention in memory of recently computed subset gradients, which are utilised in subsequent updates. We present several numerical studies based on Monte Carlo simulated data and a patient data set for fully 3D PET acquisitions. The impact of the number of subsets, different preconditioners and step size methods on the convergence of regions of interest values within the reconstructed images is explored. We observe that when using constant preconditioning, SAGA and SVRG demonstrate reduced variations in voxel values between subsequent updates and are less reliant on step size hyper-parameter selection than BSREM reconstructions. Furthermore, SAGA and SVRG can converge significantly faster to the penalised maximum likelihood solution than BSREM, particularly in low count data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tmi.2022.3203237
- https://ieeexplore.ieee.org/ielx7/42/10003062/09872020.pdf
- OA Status
- hybrid
- Cited By
- 12
- References
- 58
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4293811975
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4293811975Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tmi.2022.3203237Digital Object Identifier
- Title
-
An Investigation of Stochastic Variance Reduction Algorithms for Relative Difference Penalized 3D PET Image ReconstructionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-31Full publication date if available
- Authors
-
Robert Twyman, Simon Arridge, Željko Kereta, Bangti Jin, Ludovica Brusaferri, Sangtae Ahn, C.W. Stearns, Brian F. Hutton, Irene A. Burger, Fotis A. Kotasidis, Kris ThielemansList of authors in order
- Landing page
-
https://doi.org/10.1109/tmi.2022.3203237Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/42/10003062/09872020.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/42/10003062/09872020.pdfDirect OA link when available
- Concepts
-
Algorithm, Variance reduction, Voxel, Convergence (economics), Reduction (mathematics), Iterative reconstruction, Monte Carlo method, Computer science, Sequence (biology), Mathematics, Heuristic, Rate of convergence, Image quality, Variance (accounting), Artificial intelligence, Image (mathematics), Statistics, Accounting, Business, Economics, Biology, Channel (broadcasting), Computer network, Genetics, Geometry, Economic growthTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 3, 2023: 3Per-year citation counts (last 5 years)
- References (count)
-
58Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4293811975 |
|---|---|
| doi | https://doi.org/10.1109/tmi.2022.3203237 |
| ids.doi | https://doi.org/10.5167/uzh-252880 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36044488 |
| ids.openalex | https://openalex.org/W4293811975 |
| fwci | 2.34299415 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000465 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Algorithms |
| mesh[2].qualifier_ui | Q000379 |
| mesh[2].descriptor_ui | D049268 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | methods |
| mesh[2].descriptor_name | Positron-Emission Tomography |
| mesh[3].qualifier_ui | Q000379 |
| mesh[3].descriptor_ui | D007091 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | methods |
| mesh[3].descriptor_name | Image Processing, Computer-Assisted |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D019047 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Phantoms, Imaging |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D006801 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Humans |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000465 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Algorithms |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D049268 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Positron-Emission Tomography |
| mesh[8].qualifier_ui | Q000379 |
| mesh[8].descriptor_ui | D007091 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | methods |
| mesh[8].descriptor_name | Image Processing, Computer-Assisted |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D019047 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Phantoms, Imaging |
| type | article |
| title | An Investigation of Stochastic Variance Reduction Algorithms for Relative Difference Penalized 3D PET Image Reconstruction |
| awards[0].id | https://openalex.org/G2343787110 |
| awards[0].funder_id | https://openalex.org/F4320334627 |
| awards[0].display_name | |
| awards[0].funder_award_id | EP/T000864/1 |
| awards[0].funder_display_name | Engineering and Physical Sciences Research Council |
| awards[1].id | https://openalex.org/G8600341190 |
| awards[1].funder_id | https://openalex.org/F4320334627 |
| awards[1].display_name | |
| awards[1].funder_award_id | EP/K005278/1 |
| awards[1].funder_display_name | Engineering and Physical Sciences Research Council |
| awards[2].id | https://openalex.org/G3219874498 |
| awards[2].funder_id | https://openalex.org/F4320334627 |
| awards[2].display_name | |
| awards[2].funder_award_id | EP/P022200/1 |
| awards[2].funder_display_name | Engineering and Physical Sciences Research Council |
| awards[3].id | https://openalex.org/G5195942913 |
| awards[3].funder_id | https://openalex.org/F4320334627 |
| awards[3].display_name | |
| awards[3].funder_award_id | EP/T026693/1 |
| awards[3].funder_display_name | Engineering and Physical Sciences Research Council |
| biblio.issue | 1 |
| biblio.volume | 42 |
| biblio.last_page | 41 |
| biblio.first_page | 29 |
| topics[0].id | https://openalex.org/T10522 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Medical Imaging Techniques and Applications |
| topics[1].id | https://openalex.org/T10500 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9975000023841858 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Sparse and Compressive Sensing Techniques |
| topics[2].id | https://openalex.org/T10378 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9955999851226807 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Advanced MRI Techniques and Applications |
| funders[0].id | https://openalex.org/F4320307759 |
| funders[0].ror | https://ror.org/013msgt25 |
| funders[0].display_name | General Electric |
| funders[1].id | https://openalex.org/F4320334627 |
| funders[1].ror | https://ror.org/0439y7842 |
| funders[1].display_name | Engineering and Physical Sciences Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C11413529 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7298485636711121 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[0].display_name | Algorithm |
| concepts[1].id | https://openalex.org/C62644790 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6806199550628662 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3454689 |
| concepts[1].display_name | Variance reduction |
| concepts[2].id | https://openalex.org/C54170458 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5875696539878845 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q663554 |
| concepts[2].display_name | Voxel |
| concepts[3].id | https://openalex.org/C2777303404 |
| concepts[3].level | 2 |
| concepts[3].score | 0.518307626247406 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[3].display_name | Convergence (economics) |
| concepts[4].id | https://openalex.org/C111335779 |
| concepts[4].level | 2 |
| concepts[4].score | 0.516602635383606 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3454686 |
| concepts[4].display_name | Reduction (mathematics) |
| concepts[5].id | https://openalex.org/C141379421 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49255165457725525 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6094427 |
| concepts[5].display_name | Iterative reconstruction |
| concepts[6].id | https://openalex.org/C19499675 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4665643274784088 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[6].display_name | Monte Carlo method |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.46615728735923767 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C2778112365 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4651637375354767 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3511065 |
| concepts[8].display_name | Sequence (biology) |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.4541357159614563 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C173801870 |
| concepts[10].level | 2 |
| concepts[10].score | 0.44897499680519104 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q201413 |
| concepts[10].display_name | Heuristic |
| concepts[11].id | https://openalex.org/C57869625 |
| concepts[11].level | 3 |
| concepts[11].score | 0.44444844126701355 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1783502 |
| concepts[11].display_name | Rate of convergence |
| concepts[12].id | https://openalex.org/C55020928 |
| concepts[12].level | 3 |
| concepts[12].score | 0.4263521432876587 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3813865 |
| concepts[12].display_name | Image quality |
| concepts[13].id | https://openalex.org/C196083921 |
| concepts[13].level | 2 |
| concepts[13].score | 0.41316497325897217 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7915758 |
| concepts[13].display_name | Variance (accounting) |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.36808621883392334 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C115961682 |
| concepts[15].level | 2 |
| concepts[15].score | 0.3671298027038574 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[15].display_name | Image (mathematics) |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.22415196895599365 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C121955636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q4116214 |
| concepts[17].display_name | Accounting |
| concepts[18].id | https://openalex.org/C144133560 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[18].display_name | Business |
| concepts[19].id | https://openalex.org/C162324750 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[19].display_name | Economics |
| concepts[20].id | https://openalex.org/C86803240 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[20].display_name | Biology |
| concepts[21].id | https://openalex.org/C127162648 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[21].display_name | Channel (broadcasting) |
| concepts[22].id | https://openalex.org/C31258907 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[22].display_name | Computer network |
| concepts[23].id | https://openalex.org/C54355233 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[23].display_name | Genetics |
| concepts[24].id | https://openalex.org/C2524010 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[24].display_name | Geometry |
| concepts[25].id | https://openalex.org/C50522688 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[25].display_name | Economic growth |
| keywords[0].id | https://openalex.org/keywords/algorithm |
| keywords[0].score | 0.7298485636711121 |
| keywords[0].display_name | Algorithm |
| keywords[1].id | https://openalex.org/keywords/variance-reduction |
| keywords[1].score | 0.6806199550628662 |
| keywords[1].display_name | Variance reduction |
| keywords[2].id | https://openalex.org/keywords/voxel |
| keywords[2].score | 0.5875696539878845 |
| keywords[2].display_name | Voxel |
| keywords[3].id | https://openalex.org/keywords/convergence |
| keywords[3].score | 0.518307626247406 |
| keywords[3].display_name | Convergence (economics) |
| keywords[4].id | https://openalex.org/keywords/reduction |
| keywords[4].score | 0.516602635383606 |
| keywords[4].display_name | Reduction (mathematics) |
| keywords[5].id | https://openalex.org/keywords/iterative-reconstruction |
| keywords[5].score | 0.49255165457725525 |
| keywords[5].display_name | Iterative reconstruction |
| keywords[6].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[6].score | 0.4665643274784088 |
| keywords[6].display_name | Monte Carlo method |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.46615728735923767 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/sequence |
| keywords[8].score | 0.4651637375354767 |
| keywords[8].display_name | Sequence (biology) |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.4541357159614563 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/heuristic |
| keywords[10].score | 0.44897499680519104 |
| keywords[10].display_name | Heuristic |
| keywords[11].id | https://openalex.org/keywords/rate-of-convergence |
| keywords[11].score | 0.44444844126701355 |
| keywords[11].display_name | Rate of convergence |
| keywords[12].id | https://openalex.org/keywords/image-quality |
| keywords[12].score | 0.4263521432876587 |
| keywords[12].display_name | Image quality |
| keywords[13].id | https://openalex.org/keywords/variance |
| keywords[13].score | 0.41316497325897217 |
| keywords[13].display_name | Variance (accounting) |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.36808621883392334 |
| keywords[14].display_name | Artificial intelligence |
| keywords[15].id | https://openalex.org/keywords/image |
| keywords[15].score | 0.3671298027038574 |
| keywords[15].display_name | Image (mathematics) |
| keywords[16].id | https://openalex.org/keywords/statistics |
| keywords[16].score | 0.22415196895599365 |
| keywords[16].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1109/tmi.2022.3203237 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S58069681 |
| locations[0].source.issn | 0278-0062, 1558-254X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0278-0062 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Medical Imaging |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/42/10003062/09872020.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Medical Imaging |
| locations[0].landing_page_url | https://doi.org/10.1109/tmi.2022.3203237 |
| locations[1].id | pmid:36044488 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE transactions on medical imaging |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36044488 |
| locations[2].id | pmh:oai:www.zora.uzh.ch:252880 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401281 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Zurich Open Repository and Archive (University of Zurich) |
| locations[2].source.host_organization | https://openalex.org/I202697423 |
| locations[2].source.host_organization_name | University of Zurich |
| locations[2].source.host_organization_lineage | https://openalex.org/I202697423 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | publishedVersion |
| locations[2].raw_type | info:eu-repo/semantics/publishedVersion |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | True |
| locations[2].is_published | True |
| locations[2].raw_source_name | Twyman, Robert; Arridge, Simon; Kereta, Zeljko; Jin, Bangti; Brusaferri, Ludovica; Ahn, Sangtae; Stearns, Charles W; Hutton, Brian F; Burger, Irene A; Kotasidis, Fotis; Thielemans, Kris (2022). An Investigation of Stochastic Variance Reduction Algorithms for Relative Difference Penalized 3D PET Image Reconstruction. IEEE Transactions on Medical Imaging, 42(1):29-41. |
| locations[2].landing_page_url | |
| locations[3].id | doi:10.5167/uzh-252880 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S7407051291 |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Universität Zürich, ZORA |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article-journal |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.5167/uzh-252880 |
| indexed_in | crossref, datacite, pubmed |
| authorships[0].author.id | https://openalex.org/A5040868757 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8871-9586 |
| authorships[0].author.display_name | Robert Twyman |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Nuclear Medicine, UCL, London, U.K. |
| authorships[0].institutions[0].id | https://openalex.org/I45129253 |
| authorships[0].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University College London |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Robert Twyman |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Nuclear Medicine, UCL, London, U.K. |
| authorships[1].author.id | https://openalex.org/A5082445591 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1292-0210 |
| authorships[1].author.display_name | Simon Arridge |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, UCL, London, U.K. |
| authorships[1].institutions[0].id | https://openalex.org/I45129253 |
| authorships[1].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University College London |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Simon Arridge |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, UCL, London, U.K. |
| authorships[2].author.id | https://openalex.org/A5075218826 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2805-0037 |
| authorships[2].author.display_name | Željko Kereta |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, UCL, London, U.K. |
| authorships[2].institutions[0].id | https://openalex.org/I45129253 |
| authorships[2].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University College London |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zeljko Kereta |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, UCL, London, U.K. |
| authorships[3].author.id | https://openalex.org/A5039605463 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3775-9155 |
| authorships[3].author.display_name | Bangti Jin |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science, UCL, London, U.K. |
| authorships[3].institutions[0].id | https://openalex.org/I45129253 |
| authorships[3].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University College London |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Bangti Jin |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science, UCL, London, U.K. |
| authorships[4].author.id | https://openalex.org/A5053399112 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6475-2840 |
| authorships[4].author.display_name | Ludovica Brusaferri |
| authorships[4].countries | GB, US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I136199984, https://openalex.org/I4210127055 |
| authorships[4].affiliations[0].raw_affiliation_string | Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I45129253 |
| authorships[4].affiliations[1].raw_affiliation_string | Institute of Nuclear Medicine, UCL, London, U.K. |
| authorships[4].institutions[0].id | https://openalex.org/I45129253 |
| authorships[4].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | University College London |
| authorships[4].institutions[1].id | https://openalex.org/I4210127055 |
| authorships[4].institutions[1].ror | https://ror.org/032q5ym94 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I136199984, https://openalex.org/I4210087915, https://openalex.org/I4210127055, https://openalex.org/I48633490, https://openalex.org/I63966007 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | Athinoula A. Martinos Center for Biomedical Imaging |
| authorships[4].institutions[2].id | https://openalex.org/I136199984 |
| authorships[4].institutions[2].ror | https://ror.org/03vek6s52 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I136199984 |
| authorships[4].institutions[2].country_code | US |
| authorships[4].institutions[2].display_name | Harvard University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ludovica Brusaferri |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA, Institute of Nuclear Medicine, UCL, London, U.K. |
| authorships[5].author.id | https://openalex.org/A5059008417 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7252-2607 |
| authorships[5].author.display_name | Sangtae Ahn |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210134512 |
| authorships[5].affiliations[0].raw_affiliation_string | GE Research, Niskayuna, NY, USA |
| authorships[5].institutions[0].id | https://openalex.org/I4210134512 |
| authorships[5].institutions[0].ror | https://ror.org/03e06qt98 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210134512 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | GE Global Research (United States) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sangtae Ahn |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | GE Research, Niskayuna, NY, USA |
| authorships[6].author.id | https://openalex.org/A5000434695 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7074-6663 |
| authorships[6].author.display_name | C.W. Stearns |
| authorships[6].affiliations[0].raw_affiliation_string | GE Healthcare, Waukesha, WI, USA |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Charles W. Stearns |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | GE Healthcare, Waukesha, WI, USA |
| authorships[7].author.id | https://openalex.org/A5016217712 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-7481-0952 |
| authorships[7].author.display_name | Brian F. Hutton |
| authorships[7].countries | GB |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[7].affiliations[0].raw_affiliation_string | Institute of Nuclear Medicine, UCL, London, U.K. |
| authorships[7].institutions[0].id | https://openalex.org/I45129253 |
| authorships[7].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[7].institutions[0].country_code | GB |
| authorships[7].institutions[0].display_name | University College London |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Brian F. Hutton |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Institute of Nuclear Medicine, UCL, London, U.K. |
| authorships[8].author.id | https://openalex.org/A5040156033 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-8029-8692 |
| authorships[8].author.display_name | Irene A. Burger |
| authorships[8].countries | CH |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I202697423, https://openalex.org/I4210100468 |
| authorships[8].affiliations[0].raw_affiliation_string | Nuclear Medicine Department, University Hospital Zurich, University of Zurich, Zürich, Switzerland |
| authorships[8].institutions[0].id | https://openalex.org/I4210100468 |
| authorships[8].institutions[0].ror | https://ror.org/01462r250 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210100468 |
| authorships[8].institutions[0].country_code | CH |
| authorships[8].institutions[0].display_name | University Hospital of Zurich |
| authorships[8].institutions[1].id | https://openalex.org/I202697423 |
| authorships[8].institutions[1].ror | https://ror.org/02crff812 |
| authorships[8].institutions[1].type | education |
| authorships[8].institutions[1].lineage | https://openalex.org/I202697423 |
| authorships[8].institutions[1].country_code | CH |
| authorships[8].institutions[1].display_name | University of Zurich |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Irene A. Burger |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Nuclear Medicine Department, University Hospital Zurich, University of Zurich, Zürich, Switzerland |
| authorships[9].author.id | https://openalex.org/A5045688766 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Fotis A. Kotasidis |
| authorships[9].affiliations[0].raw_affiliation_string | GE Healthcare, Waukesha, WI, USA |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Fotis Kotasidis |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | GE Healthcare, Waukesha, WI, USA |
| authorships[10].author.id | https://openalex.org/A5075569536 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-5514-199X |
| authorships[10].author.display_name | Kris Thielemans |
| authorships[10].countries | GB |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[10].affiliations[0].raw_affiliation_string | Institute of Nuclear Medicine, UCL, London, U.K. |
| authorships[10].institutions[0].id | https://openalex.org/I45129253 |
| authorships[10].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[10].institutions[0].country_code | GB |
| authorships[10].institutions[0].display_name | University College London |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Kris Thielemans |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Institute of Nuclear Medicine, UCL, London, U.K. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/42/10003062/09872020.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Investigation of Stochastic Variance Reduction Algorithms for Relative Difference Penalized 3D PET Image Reconstruction |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10522 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Medical Imaging Techniques and Applications |
| related_works | https://openalex.org/W2757389719, https://openalex.org/W2951714568, https://openalex.org/W1963814553, https://openalex.org/W2037595954, https://openalex.org/W1988158806, https://openalex.org/W2507293823, https://openalex.org/W2386146599, https://openalex.org/W2018015402, https://openalex.org/W2144778520, https://openalex.org/W2801815023 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1109/tmi.2022.3203237 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S58069681 |
| best_oa_location.source.issn | 0278-0062, 1558-254X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0278-0062 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IEEE Transactions on Medical Imaging |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/42/10003062/09872020.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Transactions on Medical Imaging |
| best_oa_location.landing_page_url | https://doi.org/10.1109/tmi.2022.3203237 |
| primary_location.id | doi:10.1109/tmi.2022.3203237 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S58069681 |
| primary_location.source.issn | 0278-0062, 1558-254X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0278-0062 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Medical Imaging |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/42/10003062/09872020.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Medical Imaging |
| primary_location.landing_page_url | https://doi.org/10.1109/tmi.2022.3203237 |
| publication_date | 2022-08-31 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2021594562, https://openalex.org/W2109812509, https://openalex.org/W2130217200, https://openalex.org/W2092663520, https://openalex.org/W2032237670, https://openalex.org/W2154744699, https://openalex.org/W2135468550, https://openalex.org/W2105282068, https://openalex.org/W3016018838, https://openalex.org/W2135294617, https://openalex.org/W2128456478, https://openalex.org/W2221881442, https://openalex.org/W6676105031, https://openalex.org/W6680196509, https://openalex.org/W6675761068, https://openalex.org/W6734509502, https://openalex.org/W3096562082, https://openalex.org/W6635325158, https://openalex.org/W3080537213, https://openalex.org/W2625685405, https://openalex.org/W3204146714, https://openalex.org/W3195457248, https://openalex.org/W2069629287, https://openalex.org/W2093283732, https://openalex.org/W2765656669, https://openalex.org/W2963433607, https://openalex.org/W6675672627, https://openalex.org/W6774070715, https://openalex.org/W2116085429, https://openalex.org/W1970453159, https://openalex.org/W4295035325, https://openalex.org/W1983281817, https://openalex.org/W2080500950, https://openalex.org/W2765232567, https://openalex.org/W2124892246, https://openalex.org/W2539988216, https://openalex.org/W2944041008, https://openalex.org/W2963156201, https://openalex.org/W2945940687, https://openalex.org/W2088783247, https://openalex.org/W2005830269, https://openalex.org/W2161249702, https://openalex.org/W2749551990, https://openalex.org/W2888335855, https://openalex.org/W2051669046, https://openalex.org/W2776756710, https://openalex.org/W2963941964, https://openalex.org/W6640590530, https://openalex.org/W2903184369, https://openalex.org/W6705002163, https://openalex.org/W2048417186, https://openalex.org/W4281250863, https://openalex.org/W2068369256, https://openalex.org/W6873446829, https://openalex.org/W4301014524, https://openalex.org/W3104999358, https://openalex.org/W2105875671, https://openalex.org/W3007920460 |
| referenced_works_count | 58 |
| abstract_inverted_index.a | 39, 48, 81, 143 |
| abstract_inverted_index.3D | 149 |
| abstract_inverted_index.In | 71 |
| abstract_inverted_index.We | 131, 179 |
| abstract_inverted_index.at | 24 |
| abstract_inverted_index.be | 36 |
| abstract_inverted_index.in | 118, 128, 192, 227 |
| abstract_inverted_index.is | 177 |
| abstract_inverted_index.of | 14, 41, 47, 57, 63, 80, 83, 120, 154, 157, 168, 170 |
| abstract_inverted_index.on | 137, 165, 202 |
| abstract_inverted_index.to | 28, 103, 218 |
| abstract_inverted_index.we | 74 |
| abstract_inverted_index.PET | 1, 90, 150 |
| abstract_inverted_index.The | 105, 152 |
| abstract_inverted_index.and | 67, 78, 98, 111, 142, 161, 187, 198, 212 |
| abstract_inverted_index.are | 5, 126, 199 |
| abstract_inverted_index.but | 53 |
| abstract_inverted_index.can | 35, 214 |
| abstract_inverted_index.due | 27 |
| abstract_inverted_index.for | 38, 89, 147 |
| abstract_inverted_index.low | 228 |
| abstract_inverted_index.may | 19 |
| abstract_inverted_index.set | 146 |
| abstract_inverted_index.the | 12, 45, 54, 61, 64, 76, 94, 116, 155, 166, 174, 219 |
| abstract_inverted_index.two | 106 |
| abstract_inverted_index.use | 13 |
| abstract_inverted_index.via | 44 |
| abstract_inverted_index.SAGA | 110, 186, 211 |
| abstract_inverted_index.SVRG | 188, 213 |
| abstract_inverted_index.are: | 109 |
| abstract_inverted_index.data | 141, 145 |
| abstract_inverted_index.less | 200 |
| abstract_inverted_index.size | 51, 163, 204 |
| abstract_inverted_index.step | 50, 162, 203 |
| abstract_inverted_index.than | 207, 224 |
| abstract_inverted_index.that | 181 |
| abstract_inverted_index.this | 72 |
| abstract_inverted_index.when | 182 |
| abstract_inverted_index.will | 59 |
| abstract_inverted_index.with | 11 |
| abstract_inverted_index.BSREM | 208 |
| abstract_inverted_index.Carlo | 139 |
| abstract_inverted_index.Monte | 138 |
| abstract_inverted_index.SVRG. | 112 |
| abstract_inverted_index.These | 113 |
| abstract_inverted_index.based | 136 |
| abstract_inverted_index.class | 82 |
| abstract_inverted_index.count | 229 |
| abstract_inverted_index.cycle | 22 |
| abstract_inverted_index.data. | 230 |
| abstract_inverted_index.early | 9 |
| abstract_inverted_index.fully | 148 |
| abstract_inverted_index.image | 2, 65, 91 |
| abstract_inverted_index.later | 25 |
| abstract_inverted_index.limit | 21 |
| abstract_inverted_index.often | 6 |
| abstract_inverted_index.these | 17, 42 |
| abstract_inverted_index.using | 93, 183 |
| abstract_inverted_index.voxel | 193 |
| abstract_inverted_index.which | 125 |
| abstract_inverted_index.work, | 73 |
| abstract_inverted_index.BSREM, | 225 |
| abstract_inverted_index.BSREM. | 104 |
| abstract_inverted_index.during | 8 |
| abstract_inverted_index.faster | 217 |
| abstract_inverted_index.images | 34, 176 |
| abstract_inverted_index.impact | 60, 153 |
| abstract_inverted_index.memory | 119 |
| abstract_inverted_index.number | 156 |
| abstract_inverted_index.rates. | 70 |
| abstract_inverted_index.subset | 123 |
| abstract_inverted_index.values | 172, 194 |
| abstract_inverted_index.within | 173 |
| abstract_inverted_index.between | 30, 195 |
| abstract_inverted_index.compare | 100 |
| abstract_inverted_index.exhibit | 20 |
| abstract_inverted_index.maximum | 221 |
| abstract_inverted_index.methods | 18, 164 |
| abstract_inverted_index.observe | 180 |
| abstract_inverted_index.patient | 144 |
| abstract_inverted_index.penalty | 97 |
| abstract_inverted_index.present | 132 |
| abstract_inverted_index.quality | 62 |
| abstract_inverted_index.reduced | 190 |
| abstract_inverted_index.regions | 169 |
| abstract_inverted_index.relaxed | 49 |
| abstract_inverted_index.reliant | 201 |
| abstract_inverted_index.require | 115 |
| abstract_inverted_index.several | 133 |
| abstract_inverted_index.studies | 135 |
| abstract_inverted_index.updates | 197 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.achieved | 37 |
| abstract_inverted_index.adaption | 77 |
| abstract_inverted_index.computed | 122 |
| abstract_inverted_index.constant | 184 |
| abstract_inverted_index.converge | 215 |
| abstract_inverted_index.gradient | 87 |
| abstract_inverted_index.interest | 171 |
| abstract_inverted_index.recently | 121 |
| abstract_inverted_index.relative | 95 |
| abstract_inverted_index.sequence | 66 |
| abstract_inverted_index.solution | 223 |
| abstract_inverted_index.subclass | 40 |
| abstract_inverted_index.subsets, | 158 |
| abstract_inverted_index.subsets. | 15, 31 |
| abstract_inverted_index.updates. | 130 |
| abstract_inverted_index.utilised | 127 |
| abstract_inverted_index.variance | 85 |
| abstract_inverted_index.Desirable | 32 |
| abstract_inverted_index.Penalised | 0 |
| abstract_inverted_index.algorithm | 68 |
| abstract_inverted_index.behaviour | 23 |
| abstract_inverted_index.converged | 33 |
| abstract_inverted_index.different | 159 |
| abstract_inverted_index.explored. | 178 |
| abstract_inverted_index.heuristic | 55 |
| abstract_inverted_index.numerical | 134 |
| abstract_inverted_index.penalised | 220 |
| abstract_inverted_index.reduction | 86 |
| abstract_inverted_index.retention | 117 |
| abstract_inverted_index.selection | 56, 206 |
| abstract_inverted_index.sequence, | 52 |
| abstract_inverted_index.simulated | 140 |
| abstract_inverted_index.algorithms | 4, 43, 88, 108, 114 |
| abstract_inverted_index.difference | 96 |
| abstract_inverted_index.gradients, | 124 |
| abstract_inverted_index.iterations | 10, 26 |
| abstract_inverted_index.likelihood | 222 |
| abstract_inverted_index.parameters | 58 |
| abstract_inverted_index.stochastic | 84 |
| abstract_inverted_index.subsequent | 129, 196 |
| abstract_inverted_index.variations | 29, 191 |
| abstract_inverted_index.accelerated | 7 |
| abstract_inverted_index.application | 79 |
| abstract_inverted_index.convergence | 69, 101, 167 |
| abstract_inverted_index.demonstrate | 75, 189 |
| abstract_inverted_index.numerically | 99 |
| abstract_inverted_index.performance | 102 |
| abstract_inverted_index.Furthermore, | 210 |
| abstract_inverted_index.investigated | 107 |
| abstract_inverted_index.particularly | 226 |
| abstract_inverted_index.acquisitions. | 151 |
| abstract_inverted_index.reconstructed | 175 |
| abstract_inverted_index.significantly | 216 |
| abstract_inverted_index.implementation | 46 |
| abstract_inverted_index.reconstruction | 3, 92 |
| abstract_inverted_index.hyper-parameter | 205 |
| abstract_inverted_index.preconditioners | 160 |
| abstract_inverted_index.preconditioning, | 185 |
| abstract_inverted_index.reconstructions. | 209 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 11 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.46000000834465027 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.84652027 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |