An Ionospheric Anomaly Monitor Based on the One Class Support Vector Algorithm for the Ground-Based Augmentation System Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/rs13214327
An ionospheric anomaly is the irregular change of the ionosphere. It may result in potential threats for the ground-based augmentation system (GBAS) supporting the high-level precision approach. To counter the hazardous anomalies caused by the steep gradient in ionospheric delays, customized monitors are equipped in GBAS architectures. A major challenge is to rapidly detect the ionospheric gradient anomaly from environmental noise to meet the safety-critical requirements. A one-class support vector machine (OCSVM)-based monitor is developed to clearly detect ionospheric anomalies and to improve the robust detection speed. An offline-online framework based on the OCSVM is proposed to extract useful information related to anomalous characteristics in the presence of noise. To validate the effectiveness of the proposed framework, the influence of noise is fully considered and analyzed based on synthetic, semi-simulated, and real data from a typical ionospheric anomaly event. Synthetic results show that the OCSVM-based monitor can identify the anomaly that cannot be detected by other commonly-used monitors, such as the CCD-1OF, CCD-2OF and KLD-1OF. Semi-simulation results show that compared with other monitors, the newly proposed monitor can improve the average detection speed by more than 40% and decrease the minimum detectable gradient change rate to 0.002 m/s. Furthermore, in the real ionospheric anomaly event experiment, compared with other monitors, the OCSVM-based monitor can improve the detection speed by 16%. The result indicates that the proposed monitor has encouraging potential to ensure integrity of the GBAS.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs13214327
- https://www.mdpi.com/2072-4292/13/21/4327/pdf?version=1635407976
- OA Status
- gold
- Cited By
- 4
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3208656062
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3208656062Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs13214327Digital Object Identifier
- Title
-
An Ionospheric Anomaly Monitor Based on the One Class Support Vector Algorithm for the Ground-Based Augmentation SystemWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-10-28Full publication date if available
- Authors
-
Zhen Gao, Kun Fang, Yanbo Zhu, Zhipeng Wang, Kai GuoList of authors in order
- Landing page
-
https://doi.org/10.3390/rs13214327Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/13/21/4327/pdf?version=1635407976Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/13/21/4327/pdf?version=1635407976Direct OA link when available
- Concepts
-
Anomaly detection, Anomaly (physics), Computer science, Ionosphere, GNSS augmentation, Event (particle physics), Noise (video), Real-time computing, Remote sensing, Geology, Artificial intelligence, Global Positioning System, Geophysics, GNSS applications, Telecommunications, Physics, Condensed matter physics, Quantum mechanics, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3208656062 |
|---|---|
| doi | https://doi.org/10.3390/rs13214327 |
| ids.doi | https://doi.org/10.3390/rs13214327 |
| ids.mag | 3208656062 |
| ids.openalex | https://openalex.org/W3208656062 |
| fwci | 1.22893437 |
| type | article |
| title | An Ionospheric Anomaly Monitor Based on the One Class Support Vector Algorithm for the Ground-Based Augmentation System |
| awards[0].id | https://openalex.org/G6984960745 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61871012 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G5456669071 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 62022012 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G6627079197 |
| awards[2].funder_id | https://openalex.org/F4320335777 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2020YFB0505602 |
| awards[2].funder_display_name | National Key Research and Development Program of China |
| biblio.issue | 21 |
| biblio.volume | 13 |
| biblio.last_page | 4327 |
| biblio.first_page | 4327 |
| topics[0].id | https://openalex.org/T10655 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | GNSS positioning and interference |
| topics[1].id | https://openalex.org/T10159 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9965999722480774 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3103 |
| topics[1].subfield.display_name | Astronomy and Astrophysics |
| topics[1].display_name | Ionosphere and magnetosphere dynamics |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.991599977016449 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335777 |
| funders[1].ror | |
| funders[1].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C739882 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7321101427078247 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[0].display_name | Anomaly detection |
| concepts[1].id | https://openalex.org/C12997251 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7033799886703491 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q567560 |
| concepts[1].display_name | Anomaly (physics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6469528675079346 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C116403925 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6122301816940308 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q162219 |
| concepts[3].display_name | Ionosphere |
| concepts[4].id | https://openalex.org/C166212672 |
| concepts[4].level | 4 |
| concepts[4].score | 0.5238991975784302 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2165162 |
| concepts[4].display_name | GNSS augmentation |
| concepts[5].id | https://openalex.org/C2779662365 |
| concepts[5].level | 2 |
| concepts[5].score | 0.43650758266448975 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5416694 |
| concepts[5].display_name | Event (particle physics) |
| concepts[6].id | https://openalex.org/C99498987 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4284839630126953 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[6].display_name | Noise (video) |
| concepts[7].id | https://openalex.org/C79403827 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3904772102832794 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[7].display_name | Real-time computing |
| concepts[8].id | https://openalex.org/C62649853 |
| concepts[8].level | 1 |
| concepts[8].score | 0.33438563346862793 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[8].display_name | Remote sensing |
| concepts[9].id | https://openalex.org/C127313418 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2773098945617676 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[9].display_name | Geology |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.24067437648773193 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C60229501 |
| concepts[11].level | 2 |
| concepts[11].score | 0.20150765776634216 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q18822 |
| concepts[11].display_name | Global Positioning System |
| concepts[12].id | https://openalex.org/C8058405 |
| concepts[12].level | 1 |
| concepts[12].score | 0.13939523696899414 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q46255 |
| concepts[12].display_name | Geophysics |
| concepts[13].id | https://openalex.org/C14279187 |
| concepts[13].level | 3 |
| concepts[13].score | 0.11868122220039368 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5514012 |
| concepts[13].display_name | GNSS applications |
| concepts[14].id | https://openalex.org/C76155785 |
| concepts[14].level | 1 |
| concepts[14].score | 0.07983782887458801 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[14].display_name | Telecommunications |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.07739308476448059 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C26873012 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q214781 |
| concepts[16].display_name | Condensed matter physics |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| concepts[18].id | https://openalex.org/C115961682 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[18].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/anomaly-detection |
| keywords[0].score | 0.7321101427078247 |
| keywords[0].display_name | Anomaly detection |
| keywords[1].id | https://openalex.org/keywords/anomaly |
| keywords[1].score | 0.7033799886703491 |
| keywords[1].display_name | Anomaly (physics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6469528675079346 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/ionosphere |
| keywords[3].score | 0.6122301816940308 |
| keywords[3].display_name | Ionosphere |
| keywords[4].id | https://openalex.org/keywords/gnss-augmentation |
| keywords[4].score | 0.5238991975784302 |
| keywords[4].display_name | GNSS augmentation |
| keywords[5].id | https://openalex.org/keywords/event |
| keywords[5].score | 0.43650758266448975 |
| keywords[5].display_name | Event (particle physics) |
| keywords[6].id | https://openalex.org/keywords/noise |
| keywords[6].score | 0.4284839630126953 |
| keywords[6].display_name | Noise (video) |
| keywords[7].id | https://openalex.org/keywords/real-time-computing |
| keywords[7].score | 0.3904772102832794 |
| keywords[7].display_name | Real-time computing |
| keywords[8].id | https://openalex.org/keywords/remote-sensing |
| keywords[8].score | 0.33438563346862793 |
| keywords[8].display_name | Remote sensing |
| keywords[9].id | https://openalex.org/keywords/geology |
| keywords[9].score | 0.2773098945617676 |
| keywords[9].display_name | Geology |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.24067437648773193 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/global-positioning-system |
| keywords[11].score | 0.20150765776634216 |
| keywords[11].display_name | Global Positioning System |
| keywords[12].id | https://openalex.org/keywords/geophysics |
| keywords[12].score | 0.13939523696899414 |
| keywords[12].display_name | Geophysics |
| keywords[13].id | https://openalex.org/keywords/gnss-applications |
| keywords[13].score | 0.11868122220039368 |
| keywords[13].display_name | GNSS applications |
| keywords[14].id | https://openalex.org/keywords/telecommunications |
| keywords[14].score | 0.07983782887458801 |
| keywords[14].display_name | Telecommunications |
| keywords[15].id | https://openalex.org/keywords/physics |
| keywords[15].score | 0.07739308476448059 |
| keywords[15].display_name | Physics |
| language | en |
| locations[0].id | doi:10.3390/rs13214327 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/13/21/4327/pdf?version=1635407976 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs13214327 |
| locations[1].id | pmh:oai:doaj.org/article:646e6684e30e47bdbb43c0fb4670b121 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 13, Iss 21, p 4327 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/646e6684e30e47bdbb43c0fb4670b121 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5102953835 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5990-5996 |
| authorships[0].author.display_name | Zhen Gao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[0].affiliations[0].raw_affiliation_string | National Key Laboratory of CNS/ATM, School of Electronics and Information Engineering, Beihang University, Beijing 100191, China |
| authorships[0].institutions[0].id | https://openalex.org/I82880672 |
| authorships[0].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beihang University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhen Gao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | National Key Laboratory of CNS/ATM, School of Electronics and Information Engineering, Beihang University, Beijing 100191, China |
| authorships[1].author.id | https://openalex.org/A5041257365 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4686-2354 |
| authorships[1].author.display_name | Kun Fang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[1].affiliations[0].raw_affiliation_string | Research Institute for Frontier Science, Beihang University, Beijing 100191, China |
| authorships[1].institutions[0].id | https://openalex.org/I82880672 |
| authorships[1].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beihang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kun Fang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Research Institute for Frontier Science, Beihang University, Beijing 100191, China |
| authorships[2].author.id | https://openalex.org/A5107142622 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4579-795X |
| authorships[2].author.display_name | Yanbo Zhu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[2].affiliations[0].raw_affiliation_string | National Key Laboratory of CNS/ATM, School of Electronics and Information Engineering, Beihang University, Beijing 100191, China |
| authorships[2].institutions[0].id | https://openalex.org/I82880672 |
| authorships[2].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beihang University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yanbo Zhu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Key Laboratory of CNS/ATM, School of Electronics and Information Engineering, Beihang University, Beijing 100191, China |
| authorships[3].author.id | https://openalex.org/A5100424154 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1145-234X |
| authorships[3].author.display_name | Zhipeng Wang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[3].affiliations[0].raw_affiliation_string | National Key Laboratory of CNS/ATM, School of Electronics and Information Engineering, Beihang University, Beijing 100191, China |
| authorships[3].institutions[0].id | https://openalex.org/I82880672 |
| authorships[3].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beihang University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhipeng Wang |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | National Key Laboratory of CNS/ATM, School of Electronics and Information Engineering, Beihang University, Beijing 100191, China |
| authorships[4].author.id | https://openalex.org/A5011175213 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4997-0345 |
| authorships[4].author.display_name | Kai Guo |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I142263535 |
| authorships[4].affiliations[0].raw_affiliation_string | Nottingham Geospatial Institute, University of Nottingham, Nottingham NG7 2RD, UK |
| authorships[4].institutions[0].id | https://openalex.org/I142263535 |
| authorships[4].institutions[0].ror | https://ror.org/01ee9ar58 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I142263535 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | University of Nottingham |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Kai Guo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Nottingham Geospatial Institute, University of Nottingham, Nottingham NG7 2RD, UK |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/13/21/4327/pdf?version=1635407976 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Ionospheric Anomaly Monitor Based on the One Class Support Vector Algorithm for the Ground-Based Augmentation System |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10655 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | GNSS positioning and interference |
| related_works | https://openalex.org/W2806741695, https://openalex.org/W3210364259, https://openalex.org/W4290647774, https://openalex.org/W3189286258, https://openalex.org/W3207797160, https://openalex.org/W2912112202, https://openalex.org/W2667207928, https://openalex.org/W4300558037, https://openalex.org/W4377864969, https://openalex.org/W3030345572 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/rs13214327 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/13/21/4327/pdf?version=1635407976 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs13214327 |
| primary_location.id | doi:10.3390/rs13214327 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/13/21/4327/pdf?version=1635407976 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs13214327 |
| publication_date | 2021-10-28 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3110441792, https://openalex.org/W2396184922, https://openalex.org/W3114447336, https://openalex.org/W1480701231, https://openalex.org/W3092314231, https://openalex.org/W2645231759, https://openalex.org/W3047048055, https://openalex.org/W2525252193, https://openalex.org/W2058356759, https://openalex.org/W3034482413, https://openalex.org/W1892702385, https://openalex.org/W3015034749, https://openalex.org/W2115463135, https://openalex.org/W2595440842, https://openalex.org/W11545047, https://openalex.org/W1968558669, https://openalex.org/W2955763374, https://openalex.org/W3080131602, https://openalex.org/W2904656105, https://openalex.org/W3113118202, https://openalex.org/W1788497923, https://openalex.org/W3087034218, https://openalex.org/W2901629142, https://openalex.org/W2995769985, https://openalex.org/W2402632305, https://openalex.org/W2806433202, https://openalex.org/W2744461902, https://openalex.org/W2181832738, https://openalex.org/W3128926370, https://openalex.org/W2900157460, https://openalex.org/W3145491624, https://openalex.org/W2153464267, https://openalex.org/W1992742133, https://openalex.org/W2989762280, https://openalex.org/W2908408548, https://openalex.org/W2984925408, https://openalex.org/W2979546827, https://openalex.org/W3096818538, https://openalex.org/W2300678611, https://openalex.org/W3104298728, https://openalex.org/W3165446164 |
| referenced_works_count | 41 |
| abstract_inverted_index.A | 47, 66 |
| abstract_inverted_index.a | 134 |
| abstract_inverted_index.An | 0, 87 |
| abstract_inverted_index.It | 10 |
| abstract_inverted_index.To | 27, 109 |
| abstract_inverted_index.as | 159 |
| abstract_inverted_index.be | 152 |
| abstract_inverted_index.by | 33, 154, 183, 218 |
| abstract_inverted_index.in | 13, 37, 44, 104, 199 |
| abstract_inverted_index.is | 3, 50, 73, 94, 121 |
| abstract_inverted_index.of | 7, 107, 113, 119, 233 |
| abstract_inverted_index.on | 91, 127 |
| abstract_inverted_index.to | 51, 61, 75, 81, 96, 101, 195, 230 |
| abstract_inverted_index.40% | 186 |
| abstract_inverted_index.The | 220 |
| abstract_inverted_index.and | 80, 124, 130, 163, 187 |
| abstract_inverted_index.are | 42 |
| abstract_inverted_index.can | 146, 177, 213 |
| abstract_inverted_index.for | 16 |
| abstract_inverted_index.has | 227 |
| abstract_inverted_index.may | 11 |
| abstract_inverted_index.the | 4, 8, 17, 23, 29, 34, 54, 63, 83, 92, 105, 111, 114, 117, 143, 148, 160, 173, 179, 189, 200, 210, 215, 224, 234 |
| abstract_inverted_index.16%. | 219 |
| abstract_inverted_index.GBAS | 45 |
| abstract_inverted_index.data | 132 |
| abstract_inverted_index.from | 58, 133 |
| abstract_inverted_index.m/s. | 197 |
| abstract_inverted_index.meet | 62 |
| abstract_inverted_index.more | 184 |
| abstract_inverted_index.rate | 194 |
| abstract_inverted_index.real | 131, 201 |
| abstract_inverted_index.show | 141, 167 |
| abstract_inverted_index.such | 158 |
| abstract_inverted_index.than | 185 |
| abstract_inverted_index.that | 142, 150, 168, 223 |
| abstract_inverted_index.with | 170, 207 |
| abstract_inverted_index.0.002 | 196 |
| abstract_inverted_index.GBAS. | 235 |
| abstract_inverted_index.OCSVM | 93 |
| abstract_inverted_index.based | 90, 126 |
| abstract_inverted_index.event | 204 |
| abstract_inverted_index.fully | 122 |
| abstract_inverted_index.major | 48 |
| abstract_inverted_index.newly | 174 |
| abstract_inverted_index.noise | 60, 120 |
| abstract_inverted_index.other | 155, 171, 208 |
| abstract_inverted_index.speed | 182, 217 |
| abstract_inverted_index.steep | 35 |
| abstract_inverted_index.(GBAS) | 21 |
| abstract_inverted_index.cannot | 151 |
| abstract_inverted_index.caused | 32 |
| abstract_inverted_index.change | 6, 193 |
| abstract_inverted_index.detect | 53, 77 |
| abstract_inverted_index.ensure | 231 |
| abstract_inverted_index.event. | 138 |
| abstract_inverted_index.noise. | 108 |
| abstract_inverted_index.result | 12, 221 |
| abstract_inverted_index.robust | 84 |
| abstract_inverted_index.speed. | 86 |
| abstract_inverted_index.system | 20 |
| abstract_inverted_index.useful | 98 |
| abstract_inverted_index.vector | 69 |
| abstract_inverted_index.CCD-2OF | 162 |
| abstract_inverted_index.anomaly | 2, 57, 137, 149, 203 |
| abstract_inverted_index.average | 180 |
| abstract_inverted_index.clearly | 76 |
| abstract_inverted_index.counter | 28 |
| abstract_inverted_index.delays, | 39 |
| abstract_inverted_index.extract | 97 |
| abstract_inverted_index.improve | 82, 178, 214 |
| abstract_inverted_index.machine | 70 |
| abstract_inverted_index.minimum | 190 |
| abstract_inverted_index.monitor | 72, 145, 176, 212, 226 |
| abstract_inverted_index.rapidly | 52 |
| abstract_inverted_index.related | 100 |
| abstract_inverted_index.results | 140, 166 |
| abstract_inverted_index.support | 68 |
| abstract_inverted_index.threats | 15 |
| abstract_inverted_index.typical | 135 |
| abstract_inverted_index.CCD-1OF, | 161 |
| abstract_inverted_index.KLD-1OF. | 164 |
| abstract_inverted_index.analyzed | 125 |
| abstract_inverted_index.compared | 169, 206 |
| abstract_inverted_index.decrease | 188 |
| abstract_inverted_index.detected | 153 |
| abstract_inverted_index.equipped | 43 |
| abstract_inverted_index.gradient | 36, 56, 192 |
| abstract_inverted_index.identify | 147 |
| abstract_inverted_index.monitors | 41 |
| abstract_inverted_index.presence | 106 |
| abstract_inverted_index.proposed | 95, 115, 175, 225 |
| abstract_inverted_index.validate | 110 |
| abstract_inverted_index.Synthetic | 139 |
| abstract_inverted_index.anomalies | 31, 79 |
| abstract_inverted_index.anomalous | 102 |
| abstract_inverted_index.approach. | 26 |
| abstract_inverted_index.challenge | 49 |
| abstract_inverted_index.detection | 85, 181, 216 |
| abstract_inverted_index.developed | 74 |
| abstract_inverted_index.framework | 89 |
| abstract_inverted_index.hazardous | 30 |
| abstract_inverted_index.indicates | 222 |
| abstract_inverted_index.influence | 118 |
| abstract_inverted_index.integrity | 232 |
| abstract_inverted_index.irregular | 5 |
| abstract_inverted_index.monitors, | 157, 172, 209 |
| abstract_inverted_index.one-class | 67 |
| abstract_inverted_index.potential | 14, 229 |
| abstract_inverted_index.precision | 25 |
| abstract_inverted_index.considered | 123 |
| abstract_inverted_index.customized | 40 |
| abstract_inverted_index.detectable | 191 |
| abstract_inverted_index.framework, | 116 |
| abstract_inverted_index.high-level | 24 |
| abstract_inverted_index.supporting | 22 |
| abstract_inverted_index.synthetic, | 128 |
| abstract_inverted_index.OCSVM-based | 144, 211 |
| abstract_inverted_index.encouraging | 228 |
| abstract_inverted_index.experiment, | 205 |
| abstract_inverted_index.information | 99 |
| abstract_inverted_index.ionosphere. | 9 |
| abstract_inverted_index.ionospheric | 1, 38, 55, 78, 136, 202 |
| abstract_inverted_index.Furthermore, | 198 |
| abstract_inverted_index.augmentation | 19 |
| abstract_inverted_index.ground-based | 18 |
| abstract_inverted_index.(OCSVM)-based | 71 |
| abstract_inverted_index.commonly-used | 156 |
| abstract_inverted_index.effectiveness | 112 |
| abstract_inverted_index.environmental | 59 |
| abstract_inverted_index.requirements. | 65 |
| abstract_inverted_index.architectures. | 46 |
| abstract_inverted_index.offline-online | 88 |
| abstract_inverted_index.Semi-simulation | 165 |
| abstract_inverted_index.characteristics | 103 |
| abstract_inverted_index.safety-critical | 64 |
| abstract_inverted_index.semi-simulated, | 129 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5100424154 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I82880672 |
| citation_normalized_percentile.value | 0.85348307 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |