An Optical Flow- and Machine Learning-Based Fall Recognition Model for Stair Accessing Service Robots Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/math13121918
One of the reasons for the lack of commercial staircase service robots is the risk and severe impact of them falling down the stairs. Thus, the development of robust fall damage mitigation mechanisms is important for the commercial adoption of staircase robots, which in turn requires a robust fall detection model. A machine-learning-based approach was chosen due to its compatibility with the given scenario and potential for further development, with optical flow chosen as the means of sensing. Due to the costs, complexity, and potential system damage of compiling training datasets physically, simulation was used to generate said dataset, and the approach was verified by evaluating the models produced using data from experiments with a physical setup. This approach, producing fall detection models trained purely with physics-based simulation-generated data, is able to create models that can classify real-life fall data with an average of 79.89% categorical accuracy and detect the occurrence of falls with 99.99% accuracy without any further modifications, making it easy and thus attractive for commercial adoption. A study was also performed to study the effects of moving objects on optical flow fall detection, and it showed that moving objects have minimal to no impact on sparse optical flow in an environment with otherwise sufficient features. An active fall damage mitigation measure is proposed based on the models developed with this method.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/math13121918
- https://www.mdpi.com/2227-7390/13/12/1918/pdf?version=1749544721
- OA Status
- gold
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411157599
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411157599Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/math13121918Digital Object Identifier
- Title
-
An Optical Flow- and Machine Learning-Based Fall Recognition Model for Stair Accessing Service RobotsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-08Full publication date if available
- Authors
-
Jun Hua Ong, Abdullah Aamir Hayat, Mohan Rajesh Elara, Kristin L. WoodList of authors in order
- Landing page
-
https://doi.org/10.3390/math13121918Publisher landing page
- PDF URL
-
https://www.mdpi.com/2227-7390/13/12/1918/pdf?version=1749544721Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2227-7390/13/12/1918/pdf?version=1749544721Direct OA link when available
- Concepts
-
Computer science, Robot, Stairs, Categorical variable, Optical flow, Artificial intelligence, Machine learning, Simulation, Real-time computing, Engineering, Civil engineering, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411157599 |
|---|---|
| doi | https://doi.org/10.3390/math13121918 |
| ids.doi | https://doi.org/10.3390/math13121918 |
| ids.openalex | https://openalex.org/W4411157599 |
| fwci | 0.0 |
| type | article |
| title | An Optical Flow- and Machine Learning-Based Fall Recognition Model for Stair Accessing Service Robots |
| awards[0].id | https://openalex.org/G6083374422 |
| awards[0].funder_id | https://openalex.org/F4320320696 |
| awards[0].display_name | |
| awards[0].funder_award_id | M21K1a0104 |
| awards[0].funder_display_name | Agency for Science, Technology and Research |
| biblio.issue | 12 |
| biblio.volume | 13 |
| biblio.last_page | 1918 |
| biblio.first_page | 1918 |
| topics[0].id | https://openalex.org/T10444 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9986000061035156 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Context-Aware Activity Recognition Systems |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9904000163078308 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T11023 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9876000285148621 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Prosthetics and Rehabilitation Robotics |
| funders[0].id | https://openalex.org/F4320320696 |
| funders[0].ror | https://ror.org/036wvzt09 |
| funders[0].display_name | Agency for Science, Technology and Research |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6812497973442078 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C90509273 |
| concepts[1].level | 2 |
| concepts[1].score | 0.632049560546875 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[1].display_name | Robot |
| concepts[2].id | https://openalex.org/C2777295749 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6130723357200623 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12511 |
| concepts[2].display_name | Stairs |
| concepts[3].id | https://openalex.org/C5274069 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5442150235176086 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2285707 |
| concepts[3].display_name | Categorical variable |
| concepts[4].id | https://openalex.org/C155542232 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5347664952278137 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q736111 |
| concepts[4].display_name | Optical flow |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5337681770324707 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.48771652579307556 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C44154836 |
| concepts[7].level | 1 |
| concepts[7].score | 0.445118248462677 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[7].display_name | Simulation |
| concepts[8].id | https://openalex.org/C79403827 |
| concepts[8].level | 1 |
| concepts[8].score | 0.33678653836250305 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[8].display_name | Real-time computing |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.1918487846851349 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C147176958 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q77590 |
| concepts[10].display_name | Civil engineering |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6812497973442078 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/robot |
| keywords[1].score | 0.632049560546875 |
| keywords[1].display_name | Robot |
| keywords[2].id | https://openalex.org/keywords/stairs |
| keywords[2].score | 0.6130723357200623 |
| keywords[2].display_name | Stairs |
| keywords[3].id | https://openalex.org/keywords/categorical-variable |
| keywords[3].score | 0.5442150235176086 |
| keywords[3].display_name | Categorical variable |
| keywords[4].id | https://openalex.org/keywords/optical-flow |
| keywords[4].score | 0.5347664952278137 |
| keywords[4].display_name | Optical flow |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5337681770324707 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.48771652579307556 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/simulation |
| keywords[7].score | 0.445118248462677 |
| keywords[7].display_name | Simulation |
| keywords[8].id | https://openalex.org/keywords/real-time-computing |
| keywords[8].score | 0.33678653836250305 |
| keywords[8].display_name | Real-time computing |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.1918487846851349 |
| keywords[9].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.3390/math13121918 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210192031 |
| locations[0].source.issn | 2227-7390 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2227-7390 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Mathematics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2227-7390/13/12/1918/pdf?version=1749544721 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Mathematics |
| locations[0].landing_page_url | https://doi.org/10.3390/math13121918 |
| locations[1].id | pmh:oai:doaj.org/article:4da7f807c19a4ddca29fb15dabf67a83 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Mathematics, Vol 13, Iss 12, p 1918 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/4da7f807c19a4ddca29fb15dabf67a83 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5087424532 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8391-514X |
| authorships[0].author.display_name | Jun Hua Ong |
| authorships[0].countries | SG |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I152815399 |
| authorships[0].affiliations[0].raw_affiliation_string | ROAR Lab, Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore |
| authorships[0].institutions[0].id | https://openalex.org/I152815399 |
| authorships[0].institutions[0].ror | https://ror.org/05j6fvn87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I152815399 |
| authorships[0].institutions[0].country_code | SG |
| authorships[0].institutions[0].display_name | Singapore University of Technology and Design |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jun Hua Ong |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | ROAR Lab, Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore |
| authorships[1].author.id | https://openalex.org/A5086990384 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6141-4600 |
| authorships[1].author.display_name | Abdullah Aamir Hayat |
| authorships[1].countries | AE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I201726411 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mechanical and Aerospace Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates |
| authorships[1].institutions[0].id | https://openalex.org/I201726411 |
| authorships[1].institutions[0].ror | https://ror.org/01km6p862 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I201726411 |
| authorships[1].institutions[0].country_code | AE |
| authorships[1].institutions[0].display_name | United Arab Emirates University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Abdullah Aamir Hayat |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mechanical and Aerospace Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates |
| authorships[2].author.id | https://openalex.org/A5041057723 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6504-1530 |
| authorships[2].author.display_name | Mohan Rajesh Elara |
| authorships[2].countries | SG |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I152815399 |
| authorships[2].affiliations[0].raw_affiliation_string | ROAR Lab, Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore |
| authorships[2].institutions[0].id | https://openalex.org/I152815399 |
| authorships[2].institutions[0].ror | https://ror.org/05j6fvn87 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I152815399 |
| authorships[2].institutions[0].country_code | SG |
| authorships[2].institutions[0].display_name | Singapore University of Technology and Design |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mohan Rajesh Elara |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | ROAR Lab, Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore |
| authorships[3].author.id | https://openalex.org/A5033426375 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0553-5528 |
| authorships[3].author.display_name | Kristin L. Wood |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I921990950 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Engineering, Design and Computing, University of Colorado Denver, 1200 Larimer St, Ste. 3034, Denver, CO 80204, USA |
| authorships[3].institutions[0].id | https://openalex.org/I921990950 |
| authorships[3].institutions[0].ror | https://ror.org/02hh7en24 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I921990950 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Colorado Denver |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Kristin Lee Wood |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Engineering, Design and Computing, University of Colorado Denver, 1200 Larimer St, Ste. 3034, Denver, CO 80204, USA |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2227-7390/13/12/1918/pdf?version=1749544721 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Optical Flow- and Machine Learning-Based Fall Recognition Model for Stair Accessing Service Robots |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10444 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9986000061035156 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Context-Aware Activity Recognition Systems |
| related_works | https://openalex.org/W2570308965, https://openalex.org/W2049247410, https://openalex.org/W2318265355, https://openalex.org/W1486724195, https://openalex.org/W1976557033, https://openalex.org/W560737017, https://openalex.org/W2028191919, https://openalex.org/W4200464353, https://openalex.org/W2592227335, https://openalex.org/W2387566434 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/math13121918 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210192031 |
| best_oa_location.source.issn | 2227-7390 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2227-7390 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Mathematics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2227-7390/13/12/1918/pdf?version=1749544721 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Mathematics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/math13121918 |
| primary_location.id | doi:10.3390/math13121918 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210192031 |
| primary_location.source.issn | 2227-7390 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2227-7390 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Mathematics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2227-7390/13/12/1918/pdf?version=1749544721 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Mathematics |
| primary_location.landing_page_url | https://doi.org/10.3390/math13121918 |
| publication_date | 2025-06-08 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2092113649, https://openalex.org/W4380881403, https://openalex.org/W4293147662, https://openalex.org/W4322774089, https://openalex.org/W3201334148, https://openalex.org/W2996570575, https://openalex.org/W3198519217, https://openalex.org/W1582047186, https://openalex.org/W2036188855, https://openalex.org/W4285179435, https://openalex.org/W3045167461, https://openalex.org/W1500216732, https://openalex.org/W4398789810, https://openalex.org/W4401416076, https://openalex.org/W4404075638, https://openalex.org/W4408998144, https://openalex.org/W4409630657, https://openalex.org/W4396585407, https://openalex.org/W4385801085, https://openalex.org/W4405504912, https://openalex.org/W3095728620, https://openalex.org/W6744902927, https://openalex.org/W3197219002, https://openalex.org/W4205208438, https://openalex.org/W1980359755, https://openalex.org/W1976980249, https://openalex.org/W2051901414, https://openalex.org/W2551498100, https://openalex.org/W4323543341, https://openalex.org/W4395674221, https://openalex.org/W4390628596, https://openalex.org/W3200028717, https://openalex.org/W4321350273, https://openalex.org/W4387527822, https://openalex.org/W6679388247, https://openalex.org/W2760895900 |
| referenced_works_count | 36 |
| abstract_inverted_index.A | 51, 169 |
| abstract_inverted_index.a | 46, 114 |
| abstract_inverted_index.An | 208 |
| abstract_inverted_index.an | 141, 202 |
| abstract_inverted_index.as | 73 |
| abstract_inverted_index.by | 104 |
| abstract_inverted_index.in | 43, 201 |
| abstract_inverted_index.is | 12, 33, 129, 214 |
| abstract_inverted_index.it | 161, 187 |
| abstract_inverted_index.no | 195 |
| abstract_inverted_index.of | 1, 7, 18, 27, 39, 76, 87, 143, 151, 178 |
| abstract_inverted_index.on | 181, 197, 217 |
| abstract_inverted_index.to | 57, 79, 95, 131, 174, 194 |
| abstract_inverted_index.Due | 78 |
| abstract_inverted_index.One | 0 |
| abstract_inverted_index.and | 15, 64, 83, 99, 147, 163, 186 |
| abstract_inverted_index.any | 157 |
| abstract_inverted_index.can | 135 |
| abstract_inverted_index.due | 56 |
| abstract_inverted_index.for | 4, 35, 66, 166 |
| abstract_inverted_index.its | 58 |
| abstract_inverted_index.the | 2, 5, 13, 22, 25, 36, 61, 74, 80, 100, 106, 149, 176, 218 |
| abstract_inverted_index.was | 54, 93, 102, 171 |
| abstract_inverted_index.This | 117 |
| abstract_inverted_index.able | 130 |
| abstract_inverted_index.also | 172 |
| abstract_inverted_index.data | 110, 139 |
| abstract_inverted_index.down | 21 |
| abstract_inverted_index.easy | 162 |
| abstract_inverted_index.fall | 29, 48, 120, 138, 184, 210 |
| abstract_inverted_index.flow | 71, 183, 200 |
| abstract_inverted_index.from | 111 |
| abstract_inverted_index.have | 192 |
| abstract_inverted_index.lack | 6 |
| abstract_inverted_index.risk | 14 |
| abstract_inverted_index.said | 97 |
| abstract_inverted_index.that | 134, 189 |
| abstract_inverted_index.them | 19 |
| abstract_inverted_index.this | 222 |
| abstract_inverted_index.thus | 164 |
| abstract_inverted_index.turn | 44 |
| abstract_inverted_index.used | 94 |
| abstract_inverted_index.with | 60, 69, 113, 125, 140, 153, 204, 221 |
| abstract_inverted_index.Thus, | 24 |
| abstract_inverted_index.based | 216 |
| abstract_inverted_index.data, | 128 |
| abstract_inverted_index.falls | 152 |
| abstract_inverted_index.given | 62 |
| abstract_inverted_index.means | 75 |
| abstract_inverted_index.study | 170, 175 |
| abstract_inverted_index.using | 109 |
| abstract_inverted_index.which | 42 |
| abstract_inverted_index.79.89% | 144 |
| abstract_inverted_index.99.99% | 154 |
| abstract_inverted_index.active | 209 |
| abstract_inverted_index.chosen | 55, 72 |
| abstract_inverted_index.costs, | 81 |
| abstract_inverted_index.create | 132 |
| abstract_inverted_index.damage | 30, 86, 211 |
| abstract_inverted_index.detect | 148 |
| abstract_inverted_index.impact | 17, 196 |
| abstract_inverted_index.making | 160 |
| abstract_inverted_index.model. | 50 |
| abstract_inverted_index.models | 107, 122, 133, 219 |
| abstract_inverted_index.moving | 179, 190 |
| abstract_inverted_index.purely | 124 |
| abstract_inverted_index.robots | 11 |
| abstract_inverted_index.robust | 28, 47 |
| abstract_inverted_index.setup. | 116 |
| abstract_inverted_index.severe | 16 |
| abstract_inverted_index.showed | 188 |
| abstract_inverted_index.sparse | 198 |
| abstract_inverted_index.system | 85 |
| abstract_inverted_index.average | 142 |
| abstract_inverted_index.effects | 177 |
| abstract_inverted_index.falling | 20 |
| abstract_inverted_index.further | 67, 158 |
| abstract_inverted_index.measure | 213 |
| abstract_inverted_index.method. | 223 |
| abstract_inverted_index.minimal | 193 |
| abstract_inverted_index.objects | 180, 191 |
| abstract_inverted_index.optical | 70, 182, 199 |
| abstract_inverted_index.reasons | 3 |
| abstract_inverted_index.robots, | 41 |
| abstract_inverted_index.service | 10 |
| abstract_inverted_index.stairs. | 23 |
| abstract_inverted_index.trained | 123 |
| abstract_inverted_index.without | 156 |
| abstract_inverted_index.accuracy | 146, 155 |
| abstract_inverted_index.adoption | 38 |
| abstract_inverted_index.approach | 53, 101 |
| abstract_inverted_index.classify | 136 |
| abstract_inverted_index.dataset, | 98 |
| abstract_inverted_index.datasets | 90 |
| abstract_inverted_index.generate | 96 |
| abstract_inverted_index.physical | 115 |
| abstract_inverted_index.produced | 108 |
| abstract_inverted_index.proposed | 215 |
| abstract_inverted_index.requires | 45 |
| abstract_inverted_index.scenario | 63 |
| abstract_inverted_index.sensing. | 77 |
| abstract_inverted_index.training | 89 |
| abstract_inverted_index.verified | 103 |
| abstract_inverted_index.adoption. | 168 |
| abstract_inverted_index.approach, | 118 |
| abstract_inverted_index.compiling | 88 |
| abstract_inverted_index.detection | 49, 121 |
| abstract_inverted_index.developed | 220 |
| abstract_inverted_index.features. | 207 |
| abstract_inverted_index.important | 34 |
| abstract_inverted_index.otherwise | 205 |
| abstract_inverted_index.performed | 173 |
| abstract_inverted_index.potential | 65, 84 |
| abstract_inverted_index.producing | 119 |
| abstract_inverted_index.real-life | 137 |
| abstract_inverted_index.staircase | 9, 40 |
| abstract_inverted_index.attractive | 165 |
| abstract_inverted_index.commercial | 8, 37, 167 |
| abstract_inverted_index.detection, | 185 |
| abstract_inverted_index.evaluating | 105 |
| abstract_inverted_index.mechanisms | 32 |
| abstract_inverted_index.mitigation | 31, 212 |
| abstract_inverted_index.occurrence | 150 |
| abstract_inverted_index.simulation | 92 |
| abstract_inverted_index.sufficient | 206 |
| abstract_inverted_index.categorical | 145 |
| abstract_inverted_index.complexity, | 82 |
| abstract_inverted_index.development | 26 |
| abstract_inverted_index.environment | 203 |
| abstract_inverted_index.experiments | 112 |
| abstract_inverted_index.physically, | 91 |
| abstract_inverted_index.development, | 68 |
| abstract_inverted_index.compatibility | 59 |
| abstract_inverted_index.physics-based | 126 |
| abstract_inverted_index.modifications, | 159 |
| abstract_inverted_index.simulation-generated | 127 |
| abstract_inverted_index.machine-learning-based | 52 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.20978202 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |