An Optimal Schedule for Urban Road Network Repair Based on the Greedy Algorithm Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pone.0164780
The schedule of urban road network recovery caused by rainstorms, snow, and other bad weather conditions, traffic incidents, and other daily events is essential. However, limited studies have been conducted to investigate this problem. We fill this research gap by proposing an optimal schedule for urban road network repair with limited repair resources based on the greedy algorithm. Critical links will be given priority in repair according to the basic concept of the greedy algorithm. In this study, the link whose restoration produces the ratio of the system-wide travel time of the current network to the worst network is the minimum. We define such a link as the critical link for the current network. We will re-evaluate the importance of damaged links after each repair process is completed. That is, the critical link ranking will be changed along with the repair process because of the interaction among links. We repair the most critical link for the specific network state based on the greedy algorithm to obtain the optimal schedule. The algorithm can still quickly obtain an optimal schedule even if the scale of the road network is large because the greedy algorithm can reduce computational complexity. We prove that the problem can obtain the optimal solution using the greedy algorithm in theory. The algorithm is also demonstrated in the Sioux Falls network. The problem discussed in this paper is highly significant in dealing with urban road network restoration.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pone.0164780
- https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0164780&type=printable
- OA Status
- gold
- Cited By
- 23
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2539267004
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2539267004Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pone.0164780Digital Object Identifier
- Title
-
An Optimal Schedule for Urban Road Network Repair Based on the Greedy AlgorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-10-21Full publication date if available
- Authors
-
Guangquan Lu, Ying Xiong, Chuan Ding, Yunpeng WangList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pone.0164780Publisher landing page
- PDF URL
-
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0164780&type=printableDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0164780&type=printableDirect OA link when available
- Concepts
-
Schedule, Greedy algorithm, Computer science, Algorithm, Ranking (information retrieval), Mathematical optimization, Process (computing), Network planning and design, Computer network, Mathematics, Artificial intelligence, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
23Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 1, 2023: 5, 2022: 5, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2539267004 |
|---|---|
| doi | https://doi.org/10.1371/journal.pone.0164780 |
| ids.doi | https://doi.org/10.1371/journal.pone.0164780 |
| ids.mag | 2539267004 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/27768732 |
| ids.openalex | https://openalex.org/W2539267004 |
| fwci | 0.73116989 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D014186 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Transportation |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000465 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Algorithms |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D014186 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Transportation |
| type | article |
| title | An Optimal Schedule for Urban Road Network Repair Based on the Greedy Algorithm |
| awards[0].id | https://openalex.org/G3352301636 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | U1564212 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G8251236282 |
| awards[1].funder_id | https://openalex.org/F4320335777 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2012CB725404 |
| awards[1].funder_display_name | National Key Research and Development Program of China |
| biblio.issue | 10 |
| biblio.volume | 11 |
| biblio.last_page | e0164780 |
| biblio.first_page | e0164780 |
| topics[0].id | https://openalex.org/T11807 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Infrastructure Resilience and Vulnerability Analysis |
| topics[1].id | https://openalex.org/T11606 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9854000210762024 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Infrastructure Maintenance and Monitoring |
| topics[2].id | https://openalex.org/T11357 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9853000044822693 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1804 |
| topics[2].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[2].display_name | Risk and Safety Analysis |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335777 |
| funders[1].ror | |
| funders[1].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 1805 |
| apc_list.currency | USD |
| apc_list.value_usd | 1805 |
| apc_paid.value | 1805 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1805 |
| concepts[0].id | https://openalex.org/C68387754 |
| concepts[0].level | 2 |
| concepts[0].score | 0.770199716091156 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7271585 |
| concepts[0].display_name | Schedule |
| concepts[1].id | https://openalex.org/C51823790 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7472488880157471 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q504353 |
| concepts[1].display_name | Greedy algorithm |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.688040554523468 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5173763632774353 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C189430467 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5099173784255981 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7293293 |
| concepts[4].display_name | Ranking (information retrieval) |
| concepts[5].id | https://openalex.org/C126255220 |
| concepts[5].level | 1 |
| concepts[5].score | 0.453514039516449 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[5].display_name | Mathematical optimization |
| concepts[6].id | https://openalex.org/C98045186 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4477185010910034 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[6].display_name | Process (computing) |
| concepts[7].id | https://openalex.org/C114563136 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4119286835193634 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q19725982 |
| concepts[7].display_name | Network planning and design |
| concepts[8].id | https://openalex.org/C31258907 |
| concepts[8].level | 1 |
| concepts[8].score | 0.18243902921676636 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[8].display_name | Computer network |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.16295742988586426 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.12414464354515076 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/schedule |
| keywords[0].score | 0.770199716091156 |
| keywords[0].display_name | Schedule |
| keywords[1].id | https://openalex.org/keywords/greedy-algorithm |
| keywords[1].score | 0.7472488880157471 |
| keywords[1].display_name | Greedy algorithm |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.688040554523468 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.5173763632774353 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/ranking |
| keywords[4].score | 0.5099173784255981 |
| keywords[4].display_name | Ranking (information retrieval) |
| keywords[5].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[5].score | 0.453514039516449 |
| keywords[5].display_name | Mathematical optimization |
| keywords[6].id | https://openalex.org/keywords/process |
| keywords[6].score | 0.4477185010910034 |
| keywords[6].display_name | Process (computing) |
| keywords[7].id | https://openalex.org/keywords/network-planning-and-design |
| keywords[7].score | 0.4119286835193634 |
| keywords[7].display_name | Network planning and design |
| keywords[8].id | https://openalex.org/keywords/computer-network |
| keywords[8].score | 0.18243902921676636 |
| keywords[8].display_name | Computer network |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.16295742988586426 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.12414464354515076 |
| keywords[10].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1371/journal.pone.0164780 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S202381698 |
| locations[0].source.issn | 1932-6203 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1932-6203 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLoS ONE |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_lineage_names | Public Library of Science |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0164780&type=printable |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS ONE |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pone.0164780 |
| locations[1].id | pmid:27768732 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PloS one |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/27768732 |
| locations[2].id | pmh:oai:RePEc:plo:pone00:0164780 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401271 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | RePEc: Research Papers in Economics |
| locations[2].source.host_organization | https://openalex.org/I77793887 |
| locations[2].source.host_organization_name | Federal Reserve Bank of St. Louis |
| locations[2].source.host_organization_lineage | https://openalex.org/I77793887 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164780 |
| locations[3].id | pmh:oai:doaj.org/article:2a624705e837429f8b5f0020b762ea23 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | cc-by-sa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | PLoS ONE, Vol 11, Iss 10, p e0164780 (2016) |
| locations[3].landing_page_url | https://doaj.org/article/2a624705e837429f8b5f0020b762ea23 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:5074568 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | PLoS One |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/5074568 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5067494330 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0198-100X |
| authorships[0].author.display_name | Guangquan Lu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Transportation Science and Engineering, Beijing Key Laboratory for Cooperative Vehicle Infrastructure System and Safety Control, Beihang University, Beijing, 100191, China |
| authorships[0].affiliations[1].raw_affiliation_string | Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Si Pai Lou #2, Nanjing, 210096, China |
| authorships[0].institutions[0].id | https://openalex.org/I82880672 |
| authorships[0].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beihang University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Guangquan Lu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Si Pai Lou #2, Nanjing, 210096, China, School of Transportation Science and Engineering, Beijing Key Laboratory for Cooperative Vehicle Infrastructure System and Safety Control, Beihang University, Beijing, 100191, China |
| authorships[1].author.id | https://openalex.org/A5109966999 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ying Xiong |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].raw_affiliation_string | Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Si Pai Lou #2, Nanjing, 210096, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I82880672 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Transportation Science and Engineering, Beijing Key Laboratory for Cooperative Vehicle Infrastructure System and Safety Control, Beihang University, Beijing, 100191, China |
| authorships[1].institutions[0].id | https://openalex.org/I82880672 |
| authorships[1].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beihang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ying Xiong |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Si Pai Lou #2, Nanjing, 210096, China, School of Transportation Science and Engineering, Beijing Key Laboratory for Cooperative Vehicle Infrastructure System and Safety Control, Beihang University, Beijing, 100191, China |
| authorships[2].author.id | https://openalex.org/A5058569319 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9560-8585 |
| authorships[2].author.display_name | Chuan Ding |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].raw_affiliation_string | Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Si Pai Lou #2, Nanjing, 210096, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I82880672 |
| authorships[2].affiliations[1].raw_affiliation_string | School of Transportation Science and Engineering, Beijing Key Laboratory for Cooperative Vehicle Infrastructure System and Safety Control, Beihang University, Beijing, 100191, China |
| authorships[2].institutions[0].id | https://openalex.org/I82880672 |
| authorships[2].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beihang University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chuan Ding |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Si Pai Lou #2, Nanjing, 210096, China, School of Transportation Science and Engineering, Beijing Key Laboratory for Cooperative Vehicle Infrastructure System and Safety Control, Beihang University, Beijing, 100191, China |
| authorships[3].author.id | https://openalex.org/A5100350328 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4164-9677 |
| authorships[3].author.display_name | Yunpeng Wang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Transportation Science and Engineering, Beijing Key Laboratory for Cooperative Vehicle Infrastructure System and Safety Control, Beihang University, Beijing, 100191, China |
| authorships[3].affiliations[1].raw_affiliation_string | Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Si Pai Lou #2, Nanjing, 210096, China |
| authorships[3].institutions[0].id | https://openalex.org/I82880672 |
| authorships[3].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beihang University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yunpeng Wang |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Si Pai Lou #2, Nanjing, 210096, China, School of Transportation Science and Engineering, Beijing Key Laboratory for Cooperative Vehicle Infrastructure System and Safety Control, Beihang University, Beijing, 100191, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0164780&type=printable |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Optimal Schedule for Urban Road Network Repair Based on the Greedy Algorithm |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11807 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Infrastructure Resilience and Vulnerability Analysis |
| related_works | https://openalex.org/W3183948672, https://openalex.org/W3173606202, https://openalex.org/W3110381201, https://openalex.org/W1531601525, https://openalex.org/W2389640906, https://openalex.org/W4312077400, https://openalex.org/W2144503195, https://openalex.org/W2394331210, https://openalex.org/W2754967294, https://openalex.org/W2335988211 |
| cited_by_count | 23 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 3 |
| counts_by_year[6].year | 2018 |
| counts_by_year[6].cited_by_count | 2 |
| locations_count | 5 |
| best_oa_location.id | doi:10.1371/journal.pone.0164780 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S202381698 |
| best_oa_location.source.issn | 1932-6203 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1932-6203 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLoS ONE |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_lineage_names | Public Library of Science |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0164780&type=printable |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS ONE |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pone.0164780 |
| primary_location.id | doi:10.1371/journal.pone.0164780 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S202381698 |
| primary_location.source.issn | 1932-6203 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1932-6203 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLoS ONE |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_lineage_names | Public Library of Science |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0164780&type=printable |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS ONE |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pone.0164780 |
| publication_date | 2016-10-21 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W2008423363, https://openalex.org/W1980494375, https://openalex.org/W2096819890, https://openalex.org/W2028738033, https://openalex.org/W2018698567, https://openalex.org/W2380439819, https://openalex.org/W2074572249, https://openalex.org/W2017884262, https://openalex.org/W2092333870, https://openalex.org/W2008343951, https://openalex.org/W2024982571, https://openalex.org/W2123785786, https://openalex.org/W2004841112, https://openalex.org/W2045540560, https://openalex.org/W619076712, https://openalex.org/W2338174252, https://openalex.org/W2019444915, https://openalex.org/W2020170444, https://openalex.org/W2014755665, https://openalex.org/W2065091290, https://openalex.org/W1985574626, https://openalex.org/W2162446640, https://openalex.org/W2013208368, https://openalex.org/W1970028321, https://openalex.org/W1973092446, https://openalex.org/W1968158824, https://openalex.org/W1990947441, https://openalex.org/W2235269566, https://openalex.org/W2373010284, https://openalex.org/W2175706438 |
| referenced_works_count | 30 |
| abstract_inverted_index.a | 104 |
| abstract_inverted_index.In | 75 |
| abstract_inverted_index.We | 34, 101, 114, 148, 196 |
| abstract_inverted_index.an | 41, 175 |
| abstract_inverted_index.as | 106 |
| abstract_inverted_index.be | 61, 135 |
| abstract_inverted_index.by | 8, 39 |
| abstract_inverted_index.if | 179 |
| abstract_inverted_index.in | 64, 210, 217, 225, 231 |
| abstract_inverted_index.is | 22, 98, 126, 186, 214, 228 |
| abstract_inverted_index.of | 2, 71, 85, 90, 119, 143, 182 |
| abstract_inverted_index.on | 54, 160 |
| abstract_inverted_index.to | 30, 67, 94, 164 |
| abstract_inverted_index.The | 0, 169, 212, 222 |
| abstract_inverted_index.and | 11, 18 |
| abstract_inverted_index.bad | 13 |
| abstract_inverted_index.can | 171, 192, 201 |
| abstract_inverted_index.for | 44, 110, 154 |
| abstract_inverted_index.gap | 38 |
| abstract_inverted_index.is, | 129 |
| abstract_inverted_index.the | 55, 68, 72, 78, 83, 86, 91, 95, 99, 107, 111, 117, 130, 139, 144, 150, 155, 161, 166, 180, 183, 189, 199, 203, 207, 218 |
| abstract_inverted_index.That | 128 |
| abstract_inverted_index.also | 215 |
| abstract_inverted_index.been | 28 |
| abstract_inverted_index.each | 123 |
| abstract_inverted_index.even | 178 |
| abstract_inverted_index.fill | 35 |
| abstract_inverted_index.have | 27 |
| abstract_inverted_index.link | 79, 105, 109, 132, 153 |
| abstract_inverted_index.most | 151 |
| abstract_inverted_index.road | 4, 46, 184, 235 |
| abstract_inverted_index.such | 103 |
| abstract_inverted_index.that | 198 |
| abstract_inverted_index.this | 32, 36, 76, 226 |
| abstract_inverted_index.time | 89 |
| abstract_inverted_index.will | 60, 115, 134 |
| abstract_inverted_index.with | 49, 138, 233 |
| abstract_inverted_index.Falls | 220 |
| abstract_inverted_index.Sioux | 219 |
| abstract_inverted_index.after | 122 |
| abstract_inverted_index.along | 137 |
| abstract_inverted_index.among | 146 |
| abstract_inverted_index.based | 53, 159 |
| abstract_inverted_index.basic | 69 |
| abstract_inverted_index.daily | 20 |
| abstract_inverted_index.given | 62 |
| abstract_inverted_index.large | 187 |
| abstract_inverted_index.links | 59, 121 |
| abstract_inverted_index.other | 12, 19 |
| abstract_inverted_index.paper | 227 |
| abstract_inverted_index.prove | 197 |
| abstract_inverted_index.ratio | 84 |
| abstract_inverted_index.scale | 181 |
| abstract_inverted_index.snow, | 10 |
| abstract_inverted_index.state | 158 |
| abstract_inverted_index.still | 172 |
| abstract_inverted_index.urban | 3, 45, 234 |
| abstract_inverted_index.using | 206 |
| abstract_inverted_index.whose | 80 |
| abstract_inverted_index.worst | 96 |
| abstract_inverted_index.caused | 7 |
| abstract_inverted_index.define | 102 |
| abstract_inverted_index.events | 21 |
| abstract_inverted_index.greedy | 56, 73, 162, 190, 208 |
| abstract_inverted_index.highly | 229 |
| abstract_inverted_index.links. | 147 |
| abstract_inverted_index.obtain | 165, 174, 202 |
| abstract_inverted_index.reduce | 193 |
| abstract_inverted_index.repair | 48, 51, 65, 124, 140, 149 |
| abstract_inverted_index.study, | 77 |
| abstract_inverted_index.travel | 88 |
| abstract_inverted_index.because | 142, 188 |
| abstract_inverted_index.changed | 136 |
| abstract_inverted_index.concept | 70 |
| abstract_inverted_index.current | 92, 112 |
| abstract_inverted_index.damaged | 120 |
| abstract_inverted_index.dealing | 232 |
| abstract_inverted_index.limited | 25, 50 |
| abstract_inverted_index.network | 5, 47, 93, 97, 157, 185, 236 |
| abstract_inverted_index.optimal | 42, 167, 176, 204 |
| abstract_inverted_index.problem | 200, 223 |
| abstract_inverted_index.process | 125, 141 |
| abstract_inverted_index.quickly | 173 |
| abstract_inverted_index.ranking | 133 |
| abstract_inverted_index.studies | 26 |
| abstract_inverted_index.theory. | 211 |
| abstract_inverted_index.traffic | 16 |
| abstract_inverted_index.weather | 14 |
| abstract_inverted_index.Critical | 58 |
| abstract_inverted_index.However, | 24 |
| abstract_inverted_index.critical | 108, 131, 152 |
| abstract_inverted_index.minimum. | 100 |
| abstract_inverted_index.network. | 113, 221 |
| abstract_inverted_index.priority | 63 |
| abstract_inverted_index.problem. | 33 |
| abstract_inverted_index.produces | 82 |
| abstract_inverted_index.recovery | 6 |
| abstract_inverted_index.research | 37 |
| abstract_inverted_index.schedule | 1, 43, 177 |
| abstract_inverted_index.solution | 205 |
| abstract_inverted_index.specific | 156 |
| abstract_inverted_index.according | 66 |
| abstract_inverted_index.algorithm | 163, 170, 191, 209, 213 |
| abstract_inverted_index.conducted | 29 |
| abstract_inverted_index.discussed | 224 |
| abstract_inverted_index.proposing | 40 |
| abstract_inverted_index.resources | 52 |
| abstract_inverted_index.schedule. | 168 |
| abstract_inverted_index.algorithm. | 57, 74 |
| abstract_inverted_index.completed. | 127 |
| abstract_inverted_index.essential. | 23 |
| abstract_inverted_index.importance | 118 |
| abstract_inverted_index.incidents, | 17 |
| abstract_inverted_index.complexity. | 195 |
| abstract_inverted_index.conditions, | 15 |
| abstract_inverted_index.interaction | 145 |
| abstract_inverted_index.investigate | 31 |
| abstract_inverted_index.rainstorms, | 9 |
| abstract_inverted_index.re-evaluate | 116 |
| abstract_inverted_index.restoration | 81 |
| abstract_inverted_index.significant | 230 |
| abstract_inverted_index.system-wide | 87 |
| abstract_inverted_index.demonstrated | 216 |
| abstract_inverted_index.restoration. | 237 |
| abstract_inverted_index.computational | 194 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5067494330, https://openalex.org/A5058569319, https://openalex.org/A5109966999, https://openalex.org/A5100350328 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I82880672 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.78645389 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |