An Optimization Framework for Processing and Transfer Learning for the Brain Tumor Segmentation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2402.07008
Tumor segmentation from multi-modal brain MRI images is a challenging task due to the limited samples, high variance in shapes and uneven distribution of tumor morphology. The performance of automated medical image segmentation has been significant improvement by the recent advances in deep learning. However, the model predictions have not yet reached the desired level for clinical use in terms of accuracy and generalizability. In order to address the distinct problems presented in Challenges 1, 2, and 3 of BraTS 2023, we have constructed an optimization framework based on a 3D U-Net model for brain tumor segmentation. This framework incorporates a range of techniques, including various pre-processing and post-processing techniques, and transfer learning. On the validation datasets, this multi-modality brain tumor segmentation framework achieves an average lesion-wise Dice score of 0.79, 0.72, 0.74 on Challenges 1, 2, 3 respectively.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2402.07008
- https://arxiv.org/pdf/2402.07008
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391800666
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391800666Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2402.07008Digital Object Identifier
- Title
-
An Optimization Framework for Processing and Transfer Learning for the Brain Tumor SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-10Full publication date if available
- Authors
-
Tianyi Ren, Ethan Honey, Harshitha Rebala, Abhishek Sharma, Agamdeep Chopra, Mehmet KurtList of authors in order
- Landing page
-
https://arxiv.org/abs/2402.07008Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2402.07008Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2402.07008Direct OA link when available
- Concepts
-
Transfer of learning, Segmentation, Computer science, Artificial intelligence, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391800666 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2402.07008 |
| ids.doi | https://doi.org/10.48550/arxiv.2402.07008 |
| ids.openalex | https://openalex.org/W4391800666 |
| fwci | |
| type | preprint |
| title | An Optimization Framework for Processing and Transfer Learning for the Brain Tumor Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12702 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9757000207901001 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Brain Tumor Detection and Classification |
| topics[1].id | https://openalex.org/T10052 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9287999868392944 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Medical Image Segmentation Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C150899416 |
| concepts[0].level | 2 |
| concepts[0].score | 0.649417519569397 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[0].display_name | Transfer of learning |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5940456390380859 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5709507465362549 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5106049180030823 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.33369848132133484 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[0].score | 0.649417519569397 |
| keywords[0].display_name | Transfer of learning |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.5940456390380859 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5709507465362549 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5106049180030823 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.33369848132133484 |
| keywords[4].display_name | Machine learning |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2402.07008 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2402.07008 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2402.07008 |
| locations[1].id | doi:10.48550/arxiv.2402.07008 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2402.07008 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101304615 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Tianyi Ren |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ren, Tianyi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5093925775 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ethan Honey |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Honey, Ethan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5093925776 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Harshitha Rebala |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rebala, Harshitha |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101620262 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5205-7653 |
| authorships[3].author.display_name | Abhishek Sharma |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sharma, Abhishek |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5008567047 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Agamdeep Chopra |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chopra, Agamdeep |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5018816064 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7308-5661 |
| authorships[5].author.display_name | Mehmet Kurt |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Kurt, Mehmet |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2402.07008 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-02-14T00:00:00 |
| display_name | An Optimization Framework for Processing and Transfer Learning for the Brain Tumor Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12702 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9757000207901001 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Brain Tumor Detection and Classification |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3209574120, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2402.07008 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2402.07008 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2402.07008 |
| primary_location.id | pmh:oai:arXiv.org:2402.07008 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2402.07008 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2402.07008 |
| publication_date | 2024-02-10 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.3 | 77, 137 |
| abstract_inverted_index.a | 8, 89, 100 |
| abstract_inverted_index.1, | 74, 135 |
| abstract_inverted_index.2, | 75, 136 |
| abstract_inverted_index.3D | 90 |
| abstract_inverted_index.In | 64 |
| abstract_inverted_index.On | 113 |
| abstract_inverted_index.an | 84, 124 |
| abstract_inverted_index.by | 37 |
| abstract_inverted_index.in | 18, 41, 58, 72 |
| abstract_inverted_index.is | 7 |
| abstract_inverted_index.of | 23, 28, 60, 78, 102, 129 |
| abstract_inverted_index.on | 88, 133 |
| abstract_inverted_index.to | 12, 66 |
| abstract_inverted_index.we | 81 |
| abstract_inverted_index.MRI | 5 |
| abstract_inverted_index.The | 26 |
| abstract_inverted_index.and | 20, 62, 76, 107, 110 |
| abstract_inverted_index.due | 11 |
| abstract_inverted_index.for | 55, 93 |
| abstract_inverted_index.has | 33 |
| abstract_inverted_index.not | 49 |
| abstract_inverted_index.the | 13, 38, 45, 52, 68, 114 |
| abstract_inverted_index.use | 57 |
| abstract_inverted_index.yet | 50 |
| abstract_inverted_index.0.74 | 132 |
| abstract_inverted_index.Dice | 127 |
| abstract_inverted_index.This | 97 |
| abstract_inverted_index.been | 34 |
| abstract_inverted_index.deep | 42 |
| abstract_inverted_index.from | 2 |
| abstract_inverted_index.have | 48, 82 |
| abstract_inverted_index.high | 16 |
| abstract_inverted_index.task | 10 |
| abstract_inverted_index.this | 117 |
| abstract_inverted_index.0.72, | 131 |
| abstract_inverted_index.0.79, | 130 |
| abstract_inverted_index.2023, | 80 |
| abstract_inverted_index.BraTS | 79 |
| abstract_inverted_index.Tumor | 0 |
| abstract_inverted_index.U-Net | 91 |
| abstract_inverted_index.based | 87 |
| abstract_inverted_index.brain | 4, 94, 119 |
| abstract_inverted_index.image | 31 |
| abstract_inverted_index.level | 54 |
| abstract_inverted_index.model | 46, 92 |
| abstract_inverted_index.order | 65 |
| abstract_inverted_index.range | 101 |
| abstract_inverted_index.score | 128 |
| abstract_inverted_index.terms | 59 |
| abstract_inverted_index.tumor | 24, 95, 120 |
| abstract_inverted_index.images | 6 |
| abstract_inverted_index.recent | 39 |
| abstract_inverted_index.shapes | 19 |
| abstract_inverted_index.uneven | 21 |
| abstract_inverted_index.address | 67 |
| abstract_inverted_index.average | 125 |
| abstract_inverted_index.desired | 53 |
| abstract_inverted_index.limited | 14 |
| abstract_inverted_index.medical | 30 |
| abstract_inverted_index.reached | 51 |
| abstract_inverted_index.various | 105 |
| abstract_inverted_index.However, | 44 |
| abstract_inverted_index.accuracy | 61 |
| abstract_inverted_index.achieves | 123 |
| abstract_inverted_index.advances | 40 |
| abstract_inverted_index.clinical | 56 |
| abstract_inverted_index.distinct | 69 |
| abstract_inverted_index.problems | 70 |
| abstract_inverted_index.samples, | 15 |
| abstract_inverted_index.transfer | 111 |
| abstract_inverted_index.variance | 17 |
| abstract_inverted_index.automated | 29 |
| abstract_inverted_index.datasets, | 116 |
| abstract_inverted_index.framework | 86, 98, 122 |
| abstract_inverted_index.including | 104 |
| abstract_inverted_index.learning. | 43, 112 |
| abstract_inverted_index.presented | 71 |
| abstract_inverted_index.Challenges | 73, 134 |
| abstract_inverted_index.validation | 115 |
| abstract_inverted_index.challenging | 9 |
| abstract_inverted_index.constructed | 83 |
| abstract_inverted_index.improvement | 36 |
| abstract_inverted_index.lesion-wise | 126 |
| abstract_inverted_index.morphology. | 25 |
| abstract_inverted_index.multi-modal | 3 |
| abstract_inverted_index.performance | 27 |
| abstract_inverted_index.predictions | 47 |
| abstract_inverted_index.significant | 35 |
| abstract_inverted_index.techniques, | 103, 109 |
| abstract_inverted_index.distribution | 22 |
| abstract_inverted_index.incorporates | 99 |
| abstract_inverted_index.optimization | 85 |
| abstract_inverted_index.segmentation | 1, 32, 121 |
| abstract_inverted_index.respectively. | 138 |
| abstract_inverted_index.segmentation. | 96 |
| abstract_inverted_index.multi-modality | 118 |
| abstract_inverted_index.pre-processing | 106 |
| abstract_inverted_index.post-processing | 108 |
| abstract_inverted_index.generalizability. | 63 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |