An Overview of Neural Network Methods for Predicting Uncertainty in Atmospheric Remote Sensing Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/rs13245061
In this paper, we present neural network methods for predicting uncertainty in atmospheric remote sensing. These include methods for solving the direct and the inverse problem in a Bayesian framework. In the first case, a method based on a neural network for simulating the radiative transfer model and a Bayesian approach for solving the inverse problem is proposed. In the second case, (i) a neural network, in which the output is the convolution of the output for a noise-free input with the input noise distribution; and (ii) a Bayesian deep learning framework that predicts input aleatoric and model uncertainties, are designed. In addition, a neural network that uses assumed density filtering and interval arithmetic to compute uncertainty is employed for testing purposes. The accuracy and the precision of the methods are analyzed by considering the retrieval of cloud parameters from radiances measured by the Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR).
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs13245061
- https://www.mdpi.com/2072-4292/13/24/5061/pdf?version=1639544915
- OA Status
- gold
- Cited By
- 5
- References
- 55
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4200129199
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4200129199Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs13245061Digital Object Identifier
- Title
-
An Overview of Neural Network Methods for Predicting Uncertainty in Atmospheric Remote SensingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-13Full publication date if available
- Authors
-
Adrian Doicu, Alexandru Doicu, Dmitry Efremenko, Diego Loyola, Thomas TrautmannList of authors in order
- Landing page
-
https://doi.org/10.3390/rs13245061Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/13/24/5061/pdf?version=1639544915Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/13/24/5061/pdf?version=1639544915Direct OA link when available
- Concepts
-
Artificial neural network, Computer science, Convolutional neural network, Remote sensing, Inverse problem, Bayesian probability, Noise (video), Uncertainty quantification, Convolution (computer science), Artificial intelligence, Machine learning, Mathematics, Image (mathematics), Geography, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2023: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
55Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4200129199 |
|---|---|
| doi | https://doi.org/10.3390/rs13245061 |
| ids.doi | https://doi.org/10.3390/rs13245061 |
| ids.openalex | https://openalex.org/W4200129199 |
| fwci | 0.20555775 |
| type | article |
| title | An Overview of Neural Network Methods for Predicting Uncertainty in Atmospheric Remote Sensing |
| biblio.issue | 24 |
| biblio.volume | 13 |
| biblio.last_page | 5061 |
| biblio.first_page | 5061 |
| topics[0].id | https://openalex.org/T10466 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Meteorological Phenomena and Simulations |
| topics[1].id | https://openalex.org/T10347 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9987999796867371 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Atmospheric aerosols and clouds |
| topics[2].id | https://openalex.org/T11588 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9980000257492065 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2306 |
| topics[2].subfield.display_name | Global and Planetary Change |
| topics[2].display_name | Atmospheric and Environmental Gas Dynamics |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 1839 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 1983 |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7270928025245667 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6149685978889465 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5582395195960999 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C62649853 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5454145669937134 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[3].display_name | Remote sensing |
| concepts[4].id | https://openalex.org/C135252773 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5394805669784546 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1567213 |
| concepts[4].display_name | Inverse problem |
| concepts[5].id | https://openalex.org/C107673813 |
| concepts[5].level | 2 |
| concepts[5].score | 0.495187908411026 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[5].display_name | Bayesian probability |
| concepts[6].id | https://openalex.org/C99498987 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4940243363380432 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[6].display_name | Noise (video) |
| concepts[7].id | https://openalex.org/C32230216 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4118346571922302 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7882499 |
| concepts[7].display_name | Uncertainty quantification |
| concepts[8].id | https://openalex.org/C45347329 |
| concepts[8].level | 3 |
| concepts[8].score | 0.41088372468948364 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[8].display_name | Convolution (computer science) |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.40415143966674805 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.34264349937438965 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.14409354329109192 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.10927221179008484 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.09083154797554016 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.7270928025245667 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6149685978889465 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.5582395195960999 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/remote-sensing |
| keywords[3].score | 0.5454145669937134 |
| keywords[3].display_name | Remote sensing |
| keywords[4].id | https://openalex.org/keywords/inverse-problem |
| keywords[4].score | 0.5394805669784546 |
| keywords[4].display_name | Inverse problem |
| keywords[5].id | https://openalex.org/keywords/bayesian-probability |
| keywords[5].score | 0.495187908411026 |
| keywords[5].display_name | Bayesian probability |
| keywords[6].id | https://openalex.org/keywords/noise |
| keywords[6].score | 0.4940243363380432 |
| keywords[6].display_name | Noise (video) |
| keywords[7].id | https://openalex.org/keywords/uncertainty-quantification |
| keywords[7].score | 0.4118346571922302 |
| keywords[7].display_name | Uncertainty quantification |
| keywords[8].id | https://openalex.org/keywords/convolution |
| keywords[8].score | 0.41088372468948364 |
| keywords[8].display_name | Convolution (computer science) |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.40415143966674805 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.34264349937438965 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.14409354329109192 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.10927221179008484 |
| keywords[12].display_name | Image (mathematics) |
| keywords[13].id | https://openalex.org/keywords/geography |
| keywords[13].score | 0.09083154797554016 |
| keywords[13].display_name | Geography |
| language | en |
| locations[0].id | doi:10.3390/rs13245061 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/13/24/5061/pdf?version=1639544915 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs13245061 |
| locations[1].id | pmh:oai:elib.dlr.de:147553 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4377196266 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | elib (German Aerospace Center) |
| locations[1].source.host_organization | https://openalex.org/I2898391981 |
| locations[1].source.host_organization_name | Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) |
| locations[1].source.host_organization_lineage | https://openalex.org/I2898391981 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | Zeitschriftenbeitrag |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | |
| locations[2].id | pmh:oai:mdpi.com:/2072-4292/13/24/5061/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing; Volume 13; Issue 24; Pages: 5061 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/rs13245061 |
| locations[3].id | pmh:oai:uni-augsburg.opus-bayern.de:91624 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400930 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | OPUS (Augsburg University) |
| locations[3].source.host_organization | https://openalex.org/I119916105 |
| locations[3].source.host_organization_name | Augsburg University |
| locations[3].source.host_organization_lineage | https://openalex.org/I119916105 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://nbn-resolving.org/urn:nbn:de:bvb:384-opus4-916245 |
| locations[4].id | pmh:oai:doaj.org/article:6b994476ac124216a58e7efcd3d33839 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306401280 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[4].source.host_organization | |
| locations[4].source.host_organization_name | |
| locations[4].source.host_organization_lineage | |
| locations[4].license | cc-by-sa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | article |
| locations[4].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Remote Sensing, Vol 13, Iss 24, p 5061 (2021) |
| locations[4].landing_page_url | https://doaj.org/article/6b994476ac124216a58e7efcd3d33839 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5046286337 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3637-5299 |
| authorships[0].author.display_name | Adrian Doicu |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2898391981 |
| authorships[0].affiliations[0].raw_affiliation_string | Remote Sensing Technology Institute, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I2898391981 |
| authorships[0].institutions[0].ror | https://ror.org/04bwf3e34 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1305996414, https://openalex.org/I2898391981 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Adrian Doicu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Remote Sensing Technology Institute, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany |
| authorships[1].author.id | https://openalex.org/A5089834907 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7806-1677 |
| authorships[1].author.display_name | Alexandru Doicu |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I179225836 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Mathematics, University of Augsburg, 86159 Augsburg, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I179225836 |
| authorships[1].institutions[0].ror | https://ror.org/03p14d497 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I179225836 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | University of Augsburg |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Alexandru Doicu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Mathematics, University of Augsburg, 86159 Augsburg, Germany |
| authorships[2].author.id | https://openalex.org/A5037324415 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7449-5072 |
| authorships[2].author.display_name | Dmitry Efremenko |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2898391981 |
| authorships[2].affiliations[0].raw_affiliation_string | Remote Sensing Technology Institute, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I2898391981 |
| authorships[2].institutions[0].ror | https://ror.org/04bwf3e34 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1305996414, https://openalex.org/I2898391981 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dmitry S. Efremenko |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Remote Sensing Technology Institute, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany |
| authorships[3].author.id | https://openalex.org/A5003866050 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8547-9350 |
| authorships[3].author.display_name | Diego Loyola |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2898391981 |
| authorships[3].affiliations[0].raw_affiliation_string | Remote Sensing Technology Institute, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I2898391981 |
| authorships[3].institutions[0].ror | https://ror.org/04bwf3e34 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1305996414, https://openalex.org/I2898391981 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Diego Loyola |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Remote Sensing Technology Institute, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany |
| authorships[4].author.id | https://openalex.org/A5068140531 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Thomas Trautmann |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2898391981 |
| authorships[4].affiliations[0].raw_affiliation_string | Remote Sensing Technology Institute, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany |
| authorships[4].institutions[0].id | https://openalex.org/I2898391981 |
| authorships[4].institutions[0].ror | https://ror.org/04bwf3e34 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I1305996414, https://openalex.org/I2898391981 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Thomas Trautmann |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Remote Sensing Technology Institute, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/13/24/5061/pdf?version=1639544915 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-12-31T00:00:00 |
| display_name | An Overview of Neural Network Methods for Predicting Uncertainty in Atmospheric Remote Sensing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10466 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Meteorological Phenomena and Simulations |
| related_works | https://openalex.org/W1991093342, https://openalex.org/W4293226380, https://openalex.org/W2078622645, https://openalex.org/W2170798819, https://openalex.org/W3127311823, https://openalex.org/W4313906399, https://openalex.org/W4321487865, https://openalex.org/W2811106690, https://openalex.org/W2964954556, https://openalex.org/W3019910406 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/rs13245061 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/13/24/5061/pdf?version=1639544915 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs13245061 |
| primary_location.id | doi:10.3390/rs13245061 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/13/24/5061/pdf?version=1639544915 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs13245061 |
| publication_date | 2021-12-13 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2129832613, https://openalex.org/W2956805085, https://openalex.org/W3157192416, https://openalex.org/W2176178328, https://openalex.org/W6677978006, https://openalex.org/W1984034943, https://openalex.org/W2494434053, https://openalex.org/W3136794531, https://openalex.org/W2739894346, https://openalex.org/W2994306432, https://openalex.org/W3127076485, https://openalex.org/W3113155162, https://openalex.org/W1652537429, https://openalex.org/W2011478983, https://openalex.org/W2604227196, https://openalex.org/W2747730034, https://openalex.org/W2552712008, https://openalex.org/W2694869475, https://openalex.org/W2787809105, https://openalex.org/W2980551447, https://openalex.org/W2167501865, https://openalex.org/W2704099376, https://openalex.org/W4246239324, https://openalex.org/W2088784721, https://openalex.org/W2795114264, https://openalex.org/W2481190328, https://openalex.org/W2103496339, https://openalex.org/W1498436455, https://openalex.org/W1560021816, https://openalex.org/W2105822073, https://openalex.org/W2111051539, https://openalex.org/W6764214684, https://openalex.org/W6674330103, https://openalex.org/W2596693598, https://openalex.org/W3163561851, https://openalex.org/W2060115035, https://openalex.org/W2079401795, https://openalex.org/W1977001620, https://openalex.org/W2792208828, https://openalex.org/W2990636107, https://openalex.org/W2114367424, https://openalex.org/W1972832921, https://openalex.org/W2133151341, https://openalex.org/W2179103847, https://openalex.org/W6636906493, https://openalex.org/W2173025977, https://openalex.org/W1672771901, https://openalex.org/W1080053531, https://openalex.org/W2100206501, https://openalex.org/W2964339591, https://openalex.org/W4298255709, https://openalex.org/W1970296876, https://openalex.org/W3102961490, https://openalex.org/W2120949479, https://openalex.org/W2095705004 |
| referenced_works_count | 55 |
| abstract_inverted_index.a | 27, 34, 38, 48, 63, 77, 87, 103 |
| abstract_inverted_index.In | 0, 30, 58, 101 |
| abstract_inverted_index.by | 132, 142 |
| abstract_inverted_index.in | 11, 26, 66 |
| abstract_inverted_index.is | 56, 70, 117 |
| abstract_inverted_index.of | 73, 127, 136 |
| abstract_inverted_index.on | 37 |
| abstract_inverted_index.to | 114 |
| abstract_inverted_index.we | 3 |
| abstract_inverted_index.(i) | 62 |
| abstract_inverted_index.The | 122 |
| abstract_inverted_index.and | 22, 47, 85, 96, 111, 124 |
| abstract_inverted_index.are | 99, 130 |
| abstract_inverted_index.for | 8, 18, 41, 51, 76, 119 |
| abstract_inverted_index.the | 20, 23, 31, 43, 53, 59, 68, 71, 74, 81, 125, 128, 134, 143, 150 |
| abstract_inverted_index.(ii) | 86 |
| abstract_inverted_index.Deep | 151 |
| abstract_inverted_index.deep | 89 |
| abstract_inverted_index.from | 139 |
| abstract_inverted_index.that | 92, 106 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.uses | 107 |
| abstract_inverted_index.with | 80 |
| abstract_inverted_index.Earth | 144 |
| abstract_inverted_index.Space | 152 |
| abstract_inverted_index.These | 15 |
| abstract_inverted_index.based | 36 |
| abstract_inverted_index.case, | 33, 61 |
| abstract_inverted_index.cloud | 137 |
| abstract_inverted_index.first | 32 |
| abstract_inverted_index.input | 79, 82, 94 |
| abstract_inverted_index.model | 46, 97 |
| abstract_inverted_index.noise | 83 |
| abstract_inverted_index.which | 67 |
| abstract_inverted_index.(EPIC) | 148 |
| abstract_inverted_index.Camera | 147 |
| abstract_inverted_index.direct | 21 |
| abstract_inverted_index.method | 35 |
| abstract_inverted_index.neural | 5, 39, 64, 104 |
| abstract_inverted_index.output | 69, 75 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.remote | 13 |
| abstract_inverted_index.second | 60 |
| abstract_inverted_index.Climate | 153 |
| abstract_inverted_index.Imaging | 146 |
| abstract_inverted_index.assumed | 108 |
| abstract_inverted_index.compute | 115 |
| abstract_inverted_index.density | 109 |
| abstract_inverted_index.include | 16 |
| abstract_inverted_index.inverse | 24, 54 |
| abstract_inverted_index.methods | 7, 17, 129 |
| abstract_inverted_index.network | 6, 40, 105 |
| abstract_inverted_index.onboard | 149 |
| abstract_inverted_index.present | 4 |
| abstract_inverted_index.problem | 25, 55 |
| abstract_inverted_index.solving | 19, 52 |
| abstract_inverted_index.testing | 120 |
| abstract_inverted_index.Bayesian | 28, 49, 88 |
| abstract_inverted_index.accuracy | 123 |
| abstract_inverted_index.analyzed | 131 |
| abstract_inverted_index.approach | 50 |
| abstract_inverted_index.employed | 118 |
| abstract_inverted_index.interval | 112 |
| abstract_inverted_index.learning | 90 |
| abstract_inverted_index.measured | 141 |
| abstract_inverted_index.network, | 65 |
| abstract_inverted_index.predicts | 93 |
| abstract_inverted_index.sensing. | 14 |
| abstract_inverted_index.transfer | 45 |
| abstract_inverted_index.(DSCOVR). | 155 |
| abstract_inverted_index.addition, | 102 |
| abstract_inverted_index.aleatoric | 95 |
| abstract_inverted_index.designed. | 100 |
| abstract_inverted_index.filtering | 110 |
| abstract_inverted_index.framework | 91 |
| abstract_inverted_index.precision | 126 |
| abstract_inverted_index.proposed. | 57 |
| abstract_inverted_index.purposes. | 121 |
| abstract_inverted_index.radiances | 140 |
| abstract_inverted_index.radiative | 44 |
| abstract_inverted_index.retrieval | 135 |
| abstract_inverted_index.arithmetic | 113 |
| abstract_inverted_index.framework. | 29 |
| abstract_inverted_index.noise-free | 78 |
| abstract_inverted_index.parameters | 138 |
| abstract_inverted_index.predicting | 9 |
| abstract_inverted_index.simulating | 42 |
| abstract_inverted_index.Observatory | 154 |
| abstract_inverted_index.atmospheric | 12 |
| abstract_inverted_index.considering | 133 |
| abstract_inverted_index.convolution | 72 |
| abstract_inverted_index.uncertainty | 10, 116 |
| abstract_inverted_index.Polychromatic | 145 |
| abstract_inverted_index.distribution; | 84 |
| abstract_inverted_index.uncertainties, | 98 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5046286337 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I2898391981 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.8399999737739563 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.56008158 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |