An R-A dual network detection model for abnormal behavior of running vehicles Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-2925574/v1
Detection of abnormal behavior of running vehicles plays an essential role in road traffic safety. In this paper, the R-A (ResNet-Adaboost) dual network detection algorithm to cope with the problem that the existing detection algorithm of abnormal running behavior cannot detect different kinds of abnormal running behavior and cannot adapt to different detection scenarios. Firstly, this paper utilizes the YOLOV5-DEEPSORT algorithm to collect the spatial and temporal information of the target vehicle. In this way, various kinds of abnormal running behavior can be detected efficiently. Secondly, based on the information matrix, the entropy method is used to determine the dynamic weight of various abnormal running information, and then to determine the type of information input to the judgment model so as to obtain the information more accurately. Finally, the accurate vehicle running information is input into the R-A detection model. In this paper, an algorithm to estimate the abnormal running information is established as the information classification basis of the R-A detection model. The algorithm calculates the difference between the input vehicle running information matrix and the normal one to judge whether the information matrix is abnormal. Moreover, it is proved by the field experiments and NGSSIM datasets that the R-A detection model is able to detect different abnormal running behavior vehicle in different scenarios. The experimental results show that the R-A model with an accuracy of 90%-95% is better than the existing detection model. Additionally, it can more accurately detect various abnormal behavior of running vehicles.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-2925574/v1
- https://www.researchsquare.com/article/rs-2925574/latest.pdf
- OA Status
- green
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4383375354
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4383375354Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-2925574/v1Digital Object Identifier
- Title
-
An R-A dual network detection model for abnormal behavior of running vehiclesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-06Full publication date if available
- Authors
-
Chengpei Liu, Quanjun Sun, Ying Fan, QUNXU LIN, ZUCHENG HUANG, Xuyao JiangList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-2925574/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-2925574/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-2925574/latest.pdfDirect OA link when available
- Concepts
-
Dual (grammatical number), Computer science, Artificial intelligence, Art, LiteratureTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4383375354 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-2925574/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-2925574/v1 |
| ids.openalex | https://openalex.org/W4383375354 |
| fwci | 0.0 |
| type | preprint |
| title | An R-A dual network detection model for abnormal behavior of running vehicles |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T11099 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.994700014591217 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2203 |
| topics[1].subfield.display_name | Automotive Engineering |
| topics[1].display_name | Autonomous Vehicle Technology and Safety |
| topics[2].id | https://openalex.org/T11344 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9890999794006348 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2215 |
| topics[2].subfield.display_name | Building and Construction |
| topics[2].display_name | Traffic Prediction and Management Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780980858 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7554876208305359 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q110022 |
| concepts[0].display_name | Dual (grammatical number) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5104573965072632 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3444376289844513 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C142362112 |
| concepts[3].level | 0 |
| concepts[3].score | 0.17637285590171814 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[3].display_name | Art |
| concepts[4].id | https://openalex.org/C124952713 |
| concepts[4].level | 1 |
| concepts[4].score | 0.0 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8242 |
| concepts[4].display_name | Literature |
| keywords[0].id | https://openalex.org/keywords/dual |
| keywords[0].score | 0.7554876208305359 |
| keywords[0].display_name | Dual (grammatical number) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5104573965072632 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.3444376289844513 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/art |
| keywords[3].score | 0.17637285590171814 |
| keywords[3].display_name | Art |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-2925574/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-2925574/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-2925574/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5007922206 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1887-5983 |
| authorships[0].author.display_name | Chengpei Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I98834328 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Rail Transportation, WUYI University, Jiangmen 529020, China |
| authorships[0].institutions[0].id | https://openalex.org/I98834328 |
| authorships[0].institutions[0].ror | https://ror.org/059djzq42 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I98834328 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Wuyi University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chengpei Liu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Rail Transportation, WUYI University, Jiangmen 529020, China |
| authorships[1].author.id | https://openalex.org/A5113315887 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Quanjun Sun |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I98834328 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Rail Transportation, WUYI University, Jiangmen 529020, China |
| authorships[1].institutions[0].id | https://openalex.org/I98834328 |
| authorships[1].institutions[0].ror | https://ror.org/059djzq42 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I98834328 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Wuyi University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | QUANJUN SUN |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Rail Transportation, WUYI University, Jiangmen 529020, China |
| authorships[2].author.id | https://openalex.org/A5082162741 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0189-9524 |
| authorships[2].author.display_name | Ying Fan |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I46305995 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Vehicle and Transportation Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China |
| authorships[2].institutions[0].id | https://openalex.org/I46305995 |
| authorships[2].institutions[0].ror | https://ror.org/01wcbdc92 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I46305995 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Taiyuan University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | YING FAN |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Vehicle and Transportation Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China |
| authorships[3].author.id | https://openalex.org/A5101221224 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | QUNXU LIN |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I98834328 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Rail Transportation, WUYI University, Jiangmen 529020, China |
| authorships[3].institutions[0].id | https://openalex.org/I98834328 |
| authorships[3].institutions[0].ror | https://ror.org/059djzq42 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I98834328 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Wuyi University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | QUNXU LIN |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Rail Transportation, WUYI University, Jiangmen 529020, China |
| authorships[4].author.id | https://openalex.org/A5112954370 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | ZUCHENG HUANG |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210106808 |
| authorships[4].affiliations[0].raw_affiliation_string | Guangzhou Institute of Advanced Technology, Guangzhou 511458, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210106808 |
| authorships[4].institutions[0].ror | https://ror.org/01vcw4681 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210106808 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Guangzhou Institute of Advanced Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | ZUCHENG HUANG |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Guangzhou Institute of Advanced Technology, Guangzhou 511458, China |
| authorships[5].author.id | https://openalex.org/A5102598166 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Xuyao Jiang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210106808 |
| authorships[5].affiliations[0].raw_affiliation_string | Guangzhou Institute of Advanced Technology, Guangzhou 511458, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210106808 |
| authorships[5].institutions[0].ror | https://ror.org/01vcw4681 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210106808 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Guangzhou Institute of Advanced Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | XUYAO JIANG |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Guangzhou Institute of Advanced Technology, Guangzhou 511458, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-2925574/latest.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An R-A dual network detection model for abnormal behavior of running vehicles |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-2925574/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-2925574/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-2925574/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-2925574/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-2925574/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-2925574/v1 |
| publication_date | 2023-07-06 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3138982017, https://openalex.org/W3021810927, https://openalex.org/W2274750026, https://openalex.org/W3203829158, https://openalex.org/W2982801613, https://openalex.org/W3010596753, https://openalex.org/W2969248375, https://openalex.org/W2773524065, https://openalex.org/W3080174292, https://openalex.org/W2808871417, https://openalex.org/W2907668380, https://openalex.org/W1965621269, https://openalex.org/W3104886315, https://openalex.org/W2027517376, https://openalex.org/W3089138201, https://openalex.org/W2087180290, https://openalex.org/W3027910969, https://openalex.org/W2341949230, https://openalex.org/W3156435787, https://openalex.org/W3048968497, https://openalex.org/W3184084836, https://openalex.org/W4221096324, https://openalex.org/W2967952682, https://openalex.org/W3095632107, https://openalex.org/W3210367964, https://openalex.org/W2928165649, https://openalex.org/W4285820694, https://openalex.org/W3132920518, https://openalex.org/W2980040548, https://openalex.org/W3022914504, https://openalex.org/W3084383048, https://openalex.org/W4205910177, https://openalex.org/W3036707275, https://openalex.org/W3081704909, https://openalex.org/W3153630591, https://openalex.org/W3111879052, https://openalex.org/W3004886927, https://openalex.org/W3087464462, https://openalex.org/W2998841290, https://openalex.org/W4293812118 |
| referenced_works_count | 40 |
| abstract_inverted_index.In | 16, 73, 141 |
| abstract_inverted_index.an | 9, 144, 225 |
| abstract_inverted_index.as | 121, 154 |
| abstract_inverted_index.be | 83 |
| abstract_inverted_index.by | 192 |
| abstract_inverted_index.in | 12, 213 |
| abstract_inverted_index.is | 95, 134, 152, 186, 190, 204, 229 |
| abstract_inverted_index.it | 189, 237 |
| abstract_inverted_index.of | 2, 5, 36, 44, 69, 78, 102, 113, 159, 227, 245 |
| abstract_inverted_index.on | 88 |
| abstract_inverted_index.so | 120 |
| abstract_inverted_index.to | 26, 51, 62, 97, 109, 116, 122, 146, 180, 206 |
| abstract_inverted_index.R-A | 20, 138, 161, 201, 222 |
| abstract_inverted_index.The | 164, 216 |
| abstract_inverted_index.and | 48, 66, 107, 176, 196 |
| abstract_inverted_index.can | 82, 238 |
| abstract_inverted_index.one | 179 |
| abstract_inverted_index.the | 19, 29, 32, 59, 64, 70, 89, 92, 99, 111, 117, 124, 129, 137, 148, 155, 160, 167, 170, 177, 183, 193, 200, 221, 232 |
| abstract_inverted_index.able | 205 |
| abstract_inverted_index.cope | 27 |
| abstract_inverted_index.dual | 22 |
| abstract_inverted_index.into | 136 |
| abstract_inverted_index.more | 126, 239 |
| abstract_inverted_index.road | 13 |
| abstract_inverted_index.role | 11 |
| abstract_inverted_index.show | 219 |
| abstract_inverted_index.than | 231 |
| abstract_inverted_index.that | 31, 199, 220 |
| abstract_inverted_index.then | 108 |
| abstract_inverted_index.this | 17, 56, 74, 142 |
| abstract_inverted_index.type | 112 |
| abstract_inverted_index.used | 96 |
| abstract_inverted_index.way, | 75 |
| abstract_inverted_index.with | 28, 224 |
| abstract_inverted_index.adapt | 50 |
| abstract_inverted_index.based | 87 |
| abstract_inverted_index.basis | 158 |
| abstract_inverted_index.field | 194 |
| abstract_inverted_index.input | 115, 135, 171 |
| abstract_inverted_index.judge | 181 |
| abstract_inverted_index.kinds | 43, 77 |
| abstract_inverted_index.model | 119, 203, 223 |
| abstract_inverted_index.paper | 57 |
| abstract_inverted_index.plays | 8 |
| abstract_inverted_index.NGSSIM | 197 |
| abstract_inverted_index.better | 230 |
| abstract_inverted_index.cannot | 40, 49 |
| abstract_inverted_index.detect | 41, 207, 241 |
| abstract_inverted_index.matrix | 175, 185 |
| abstract_inverted_index.method | 94 |
| abstract_inverted_index.model. | 140, 163, 235 |
| abstract_inverted_index.normal | 178 |
| abstract_inverted_index.obtain | 123 |
| abstract_inverted_index.paper, | 18, 143 |
| abstract_inverted_index.proved | 191 |
| abstract_inverted_index.target | 71 |
| abstract_inverted_index.weight | 101 |
| abstract_inverted_index.90%-95% | 228 |
| abstract_inverted_index.between | 169 |
| abstract_inverted_index.collect | 63 |
| abstract_inverted_index.dynamic | 100 |
| abstract_inverted_index.entropy | 93 |
| abstract_inverted_index.matrix, | 91 |
| abstract_inverted_index.network | 23 |
| abstract_inverted_index.problem | 30 |
| abstract_inverted_index.results | 218 |
| abstract_inverted_index.running | 6, 38, 46, 80, 105, 132, 150, 173, 210, 246 |
| abstract_inverted_index.safety. | 15 |
| abstract_inverted_index.spatial | 65 |
| abstract_inverted_index.traffic | 14 |
| abstract_inverted_index.various | 76, 103, 242 |
| abstract_inverted_index.vehicle | 131, 172, 212 |
| abstract_inverted_index.whether | 182 |
| abstract_inverted_index.Finally, | 128 |
| abstract_inverted_index.Firstly, | 55 |
| abstract_inverted_index.abnormal | 3, 37, 45, 79, 104, 149, 209, 243 |
| abstract_inverted_index.accuracy | 226 |
| abstract_inverted_index.accurate | 130 |
| abstract_inverted_index.behavior | 4, 39, 47, 81, 211, 244 |
| abstract_inverted_index.datasets | 198 |
| abstract_inverted_index.detected | 84 |
| abstract_inverted_index.estimate | 147 |
| abstract_inverted_index.existing | 33, 233 |
| abstract_inverted_index.judgment | 118 |
| abstract_inverted_index.temporal | 67 |
| abstract_inverted_index.utilizes | 58 |
| abstract_inverted_index.vehicle. | 72 |
| abstract_inverted_index.vehicles | 7 |
| abstract_inverted_index.Detection | 1 |
| abstract_inverted_index.Moreover, | 188 |
| abstract_inverted_index.Secondly, | 86 |
| abstract_inverted_index.abnormal. | 187 |
| abstract_inverted_index.algorithm | 25, 35, 61, 145, 165 |
| abstract_inverted_index.detection | 24, 34, 53, 139, 162, 202, 234 |
| abstract_inverted_index.determine | 98, 110 |
| abstract_inverted_index.different | 42, 52, 208, 214 |
| abstract_inverted_index.essential | 10 |
| abstract_inverted_index.vehicles. | 247 |
| abstract_inverted_index.accurately | 240 |
| abstract_inverted_index.calculates | 166 |
| abstract_inverted_index.difference | 168 |
| abstract_inverted_index.scenarios. | 54, 215 |
| abstract_inverted_index.accurately. | 127 |
| abstract_inverted_index.established | 153 |
| abstract_inverted_index.experiments | 195 |
| abstract_inverted_index.information | 68, 90, 114, 125, 133, 151, 156, 174, 184 |
| abstract_inverted_index.efficiently. | 85 |
| abstract_inverted_index.experimental | 217 |
| abstract_inverted_index.information, | 106 |
| abstract_inverted_index.Additionally, | 236 |
| abstract_inverted_index.classification | 157 |
| abstract_inverted_index.YOLOV5-DEEPSORT | 60 |
| abstract_inverted_index.(ResNet-Adaboost) | 21 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5007922206 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I98834328 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.4000000059604645 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.08510112 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |