An Ultralow-Power Real-Time Machine Learning Based fNIRS Motion Artifacts Detection Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/tvlsi.2024.3356161
Due to iterative matrix multiplications or gradient computations, machine learning modules often require a large amount of processing power and memory. As a result, they are often not feasible for use in wearable devices, which have limited processing power and memory. In this study, we propose an ultralow-power and real-time machine learning-based motion artifact detection module for functional near-infrared spectroscopy (fNIRS) systems. We achieved a high classification accuracy of 97.42%, low field-programmable gate array (FPGA) resource utilization of 38354 lookup tables and 6024 flip-flops, as well as low power consumption of 0.021 W in dynamic power. These results outperform conventional CPU support vector machine (SVM) methods and other state-of-the-art SVM implementations. This study has demonstrated that an FPGA-based fNIRS motion artifact classifier can be exploited while meeting low power and resource constraints, which are crucial in embedded hardware systems while keeping high classification accuracy.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tvlsi.2024.3356161
- OA Status
- green
- Cited By
- 6
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391341266
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391341266Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tvlsi.2024.3356161Digital Object Identifier
- Title
-
An Ultralow-Power Real-Time Machine Learning Based fNIRS Motion Artifacts DetectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-30Full publication date if available
- Authors
-
Renas Ercan, Yunjia Xia, Yunyi Zhao, Rui Loureiro, Shufan Yang, Hubin ZhaoList of authors in order
- Landing page
-
https://doi.org/10.1109/tvlsi.2024.3356161Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/11100859Direct OA link when available
- Concepts
-
Computer science, Motion (physics), Artificial intelligence, Power (physics), Machine learning, Computer vision, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391341266 |
|---|---|
| doi | https://doi.org/10.1109/tvlsi.2024.3356161 |
| ids.doi | https://doi.org/10.1109/tvlsi.2024.3356161 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38765316 |
| ids.openalex | https://openalex.org/W4391341266 |
| fwci | 4.91444291 |
| type | article |
| title | An Ultralow-Power Real-Time Machine Learning Based fNIRS Motion Artifacts Detection |
| awards[0].id | https://openalex.org/G313303880 |
| awards[0].funder_id | https://openalex.org/F4320334627 |
| awards[0].display_name | |
| awards[0].funder_award_id | EP/W000679/1 |
| awards[0].funder_display_name | Engineering and Physical Sciences Research Council |
| awards[1].id | https://openalex.org/G2048369165 |
| awards[1].funder_id | https://openalex.org/F4320320006 |
| awards[1].display_name | |
| awards[1].funder_award_id | RGS\R2\222333 |
| awards[1].funder_display_name | Royal Society |
| awards[2].id | https://openalex.org/G8338898233 |
| awards[2].funder_id | https://openalex.org/F4320335087 |
| awards[2].display_name | |
| awards[2].funder_award_id | 013191 |
| awards[2].funder_display_name | Innovate UK |
| awards[3].id | https://openalex.org/G6363780323 |
| awards[3].funder_id | https://openalex.org/F4320320005 |
| awards[3].display_name | |
| awards[3].funder_award_id | IF2223-172 |
| awards[3].funder_display_name | Royal Academy of Engineering |
| awards[4].id | https://openalex.org/G3120898025 |
| awards[4].funder_id | https://openalex.org/F4320334627 |
| awards[4].display_name | |
| awards[4].funder_award_id | 13171178 R00287 |
| awards[4].funder_display_name | Engineering and Physical Sciences Research Council |
| biblio.issue | 4 |
| biblio.volume | 32 |
| biblio.last_page | 773 |
| biblio.first_page | 763 |
| topics[0].id | https://openalex.org/T10977 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Optical Imaging and Spectroscopy Techniques |
| topics[1].id | https://openalex.org/T12153 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9976999759674072 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3105 |
| topics[1].subfield.display_name | Instrumentation |
| topics[1].display_name | Advanced Optical Sensing Technologies |
| topics[2].id | https://openalex.org/T11196 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9962000250816345 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Non-Invasive Vital Sign Monitoring |
| funders[0].id | https://openalex.org/F4320320005 |
| funders[0].ror | https://ror.org/0526snb40 |
| funders[0].display_name | Royal Academy of Engineering |
| funders[1].id | https://openalex.org/F4320320006 |
| funders[1].ror | https://ror.org/03wnrjx87 |
| funders[1].display_name | Royal Society |
| funders[2].id | https://openalex.org/F4320334627 |
| funders[2].ror | https://ror.org/0439y7842 |
| funders[2].display_name | Engineering and Physical Sciences Research Council |
| funders[3].id | https://openalex.org/F4320335087 |
| funders[3].ror | https://ror.org/05ar5fy68 |
| funders[3].display_name | Innovate UK |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6071064472198486 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C104114177 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5026628971099854 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q79782 |
| concepts[1].display_name | Motion (physics) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.455281138420105 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C163258240 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4550938308238983 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[3].display_name | Power (physics) |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.342002809047699 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.34037619829177856 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.0785759687423706 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C62520636 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[7].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6071064472198486 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/motion |
| keywords[1].score | 0.5026628971099854 |
| keywords[1].display_name | Motion (physics) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.455281138420105 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/power |
| keywords[3].score | 0.4550938308238983 |
| keywords[3].display_name | Power (physics) |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.342002809047699 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.34037619829177856 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.0785759687423706 |
| keywords[6].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1109/tvlsi.2024.3356161 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S37538908 |
| locations[0].source.issn | 1063-8210, 1557-9999 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1063-8210 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Very Large Scale Integration (VLSI) Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Very Large Scale Integration (VLSI) Systems |
| locations[0].landing_page_url | https://doi.org/10.1109/tvlsi.2024.3356161 |
| locations[1].id | pmid:38765316 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE transactions on very large scale integration (VLSI) systems |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38765316 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11100859 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | IEEE Trans Very Large Scale Integr VLSI Syst |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11100859 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5093818401 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-5061-7689 |
| authorships[0].author.display_name | Renas Ercan |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[0].affiliations[0].raw_affiliation_string | UCL, London, UCL, U.K. |
| authorships[0].institutions[0].id | https://openalex.org/I45129253 |
| authorships[0].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University College London |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Renas Ercan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | UCL, London, UCL, U.K. |
| authorships[1].author.id | https://openalex.org/A5062895413 |
| authorships[1].author.orcid | https://orcid.org/0009-0000-2768-6418 |
| authorships[1].author.display_name | Yunjia Xia |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210153682, https://openalex.org/I45129253 |
| authorships[1].affiliations[0].raw_affiliation_string | HUB of Intelligent Neuro-Engineering (HUBIN), Division of Surgery and Interventional Science, London, UCL, U.K. |
| authorships[1].institutions[0].id | https://openalex.org/I4210153682 |
| authorships[1].institutions[0].ror | https://ror.org/0576zak10 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210153682 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Intelligent Health (United Kingdom) |
| authorships[1].institutions[1].id | https://openalex.org/I45129253 |
| authorships[1].institutions[1].ror | https://ror.org/02jx3x895 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[1].institutions[1].country_code | GB |
| authorships[1].institutions[1].display_name | University College London |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yunjia Xia |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | HUB of Intelligent Neuro-Engineering (HUBIN), Division of Surgery and Interventional Science, London, UCL, U.K. |
| authorships[2].author.id | https://openalex.org/A5013349642 |
| authorships[2].author.orcid | https://orcid.org/0009-0002-7423-1007 |
| authorships[2].author.display_name | Yunyi Zhao |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210153682, https://openalex.org/I45129253 |
| authorships[2].affiliations[0].raw_affiliation_string | HUB of Intelligent Neuro-Engineering (HUBIN), Division of Surgery and Interventional Science, London, UCL, U.K. |
| authorships[2].institutions[0].id | https://openalex.org/I4210153682 |
| authorships[2].institutions[0].ror | https://ror.org/0576zak10 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210153682 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Intelligent Health (United Kingdom) |
| authorships[2].institutions[1].id | https://openalex.org/I45129253 |
| authorships[2].institutions[1].ror | https://ror.org/02jx3x895 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[2].institutions[1].country_code | GB |
| authorships[2].institutions[1].display_name | University College London |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yunyi Zhao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | HUB of Intelligent Neuro-Engineering (HUBIN), Division of Surgery and Interventional Science, London, UCL, U.K. |
| authorships[3].author.id | https://openalex.org/A5029607250 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9335-3811 |
| authorships[3].author.display_name | Rui Loureiro |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[3].affiliations[0].raw_affiliation_string | IOMS, Division of Surgery and Interventional Science, UCL, London, U.K. |
| authorships[3].institutions[0].id | https://openalex.org/I45129253 |
| authorships[3].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University College London |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Rui Loureiro |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | IOMS, Division of Surgery and Interventional Science, UCL, London, U.K. |
| authorships[4].author.id | https://openalex.org/A5040350578 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0531-2903 |
| authorships[4].author.display_name | Shufan Yang |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[4].affiliations[0].raw_affiliation_string | UCL, London, UCL, U.K. |
| authorships[4].institutions[0].id | https://openalex.org/I45129253 |
| authorships[4].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | University College London |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shufan Yang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | UCL, London, UCL, U.K. |
| authorships[5].author.id | https://openalex.org/A5016060123 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9408-4724 |
| authorships[5].author.display_name | Hubin Zhao |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210153682, https://openalex.org/I45129253 |
| authorships[5].affiliations[0].raw_affiliation_string | HUB of Intelligent Neuro-Engineering (HUBIN), Division of Surgery and Interventional Science, London, UCL, U.K. |
| authorships[5].institutions[0].id | https://openalex.org/I4210153682 |
| authorships[5].institutions[0].ror | https://ror.org/0576zak10 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210153682 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | Intelligent Health (United Kingdom) |
| authorships[5].institutions[1].id | https://openalex.org/I45129253 |
| authorships[5].institutions[1].ror | https://ror.org/02jx3x895 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[5].institutions[1].country_code | GB |
| authorships[5].institutions[1].display_name | University College London |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Hubin Zhao |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | HUB of Intelligent Neuro-Engineering (HUBIN), Division of Surgery and Interventional Science, London, UCL, U.K. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11100859 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-01-31T00:00:00 |
| display_name | An Ultralow-Power Real-Time Machine Learning Based fNIRS Motion Artifacts Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10977 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Optical Imaging and Spectroscopy Techniques |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W2058170566, https://openalex.org/W4306674287, https://openalex.org/W2755342338, https://openalex.org/W2772917594, https://openalex.org/W2775347418, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:11100859 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | IEEE Trans Very Large Scale Integr VLSI Syst |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11100859 |
| primary_location.id | doi:10.1109/tvlsi.2024.3356161 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S37538908 |
| primary_location.source.issn | 1063-8210, 1557-9999 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1063-8210 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Very Large Scale Integration (VLSI) Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Very Large Scale Integration (VLSI) Systems |
| primary_location.landing_page_url | https://doi.org/10.1109/tvlsi.2024.3356161 |
| publication_date | 2024-01-30 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3185976047, https://openalex.org/W2165201535, https://openalex.org/W4224252572, https://openalex.org/W2108431768, https://openalex.org/W2063398621, https://openalex.org/W1976168687, https://openalex.org/W2908219441, https://openalex.org/W3019985288, https://openalex.org/W2055522016, https://openalex.org/W2029802912, https://openalex.org/W2047284304, https://openalex.org/W2905519894, https://openalex.org/W60720562, https://openalex.org/W2212589165, https://openalex.org/W2045990647, https://openalex.org/W2091608526, https://openalex.org/W2002994039, https://openalex.org/W2109333096, https://openalex.org/W1996776986, https://openalex.org/W2004995977, https://openalex.org/W2892238144, https://openalex.org/W3035746764, https://openalex.org/W65904746, https://openalex.org/W2099119042, https://openalex.org/W2172808202, https://openalex.org/W2071655348, https://openalex.org/W2997134259, https://openalex.org/W4226048096 |
| referenced_works_count | 28 |
| abstract_inverted_index.W | 92 |
| abstract_inverted_index.a | 13, 22, 64 |
| abstract_inverted_index.As | 21 |
| abstract_inverted_index.In | 41 |
| abstract_inverted_index.We | 62 |
| abstract_inverted_index.an | 46, 116 |
| abstract_inverted_index.as | 84, 86 |
| abstract_inverted_index.be | 123 |
| abstract_inverted_index.in | 31, 93, 135 |
| abstract_inverted_index.of | 16, 68, 77, 90 |
| abstract_inverted_index.or | 5 |
| abstract_inverted_index.to | 1 |
| abstract_inverted_index.we | 44 |
| abstract_inverted_index.CPU | 100 |
| abstract_inverted_index.Due | 0 |
| abstract_inverted_index.SVM | 109 |
| abstract_inverted_index.and | 19, 39, 48, 81, 106, 129 |
| abstract_inverted_index.are | 25, 133 |
| abstract_inverted_index.can | 122 |
| abstract_inverted_index.for | 29, 56 |
| abstract_inverted_index.has | 113 |
| abstract_inverted_index.low | 70, 87, 127 |
| abstract_inverted_index.not | 27 |
| abstract_inverted_index.use | 30 |
| abstract_inverted_index.6024 | 82 |
| abstract_inverted_index.This | 111 |
| abstract_inverted_index.gate | 72 |
| abstract_inverted_index.have | 35 |
| abstract_inverted_index.high | 65, 141 |
| abstract_inverted_index.that | 115 |
| abstract_inverted_index.they | 24 |
| abstract_inverted_index.this | 42 |
| abstract_inverted_index.well | 85 |
| abstract_inverted_index.(SVM) | 104 |
| abstract_inverted_index.0.021 | 91 |
| abstract_inverted_index.38354 | 78 |
| abstract_inverted_index.These | 96 |
| abstract_inverted_index.array | 73 |
| abstract_inverted_index.fNIRS | 118 |
| abstract_inverted_index.large | 14 |
| abstract_inverted_index.often | 11, 26 |
| abstract_inverted_index.other | 107 |
| abstract_inverted_index.power | 18, 38, 88, 128 |
| abstract_inverted_index.study | 112 |
| abstract_inverted_index.which | 34, 132 |
| abstract_inverted_index.while | 125, 139 |
| abstract_inverted_index.(FPGA) | 74 |
| abstract_inverted_index.amount | 15 |
| abstract_inverted_index.lookup | 79 |
| abstract_inverted_index.matrix | 3 |
| abstract_inverted_index.module | 55 |
| abstract_inverted_index.motion | 52, 119 |
| abstract_inverted_index.power. | 95 |
| abstract_inverted_index.study, | 43 |
| abstract_inverted_index.tables | 80 |
| abstract_inverted_index.vector | 102 |
| abstract_inverted_index.(fNIRS) | 60 |
| abstract_inverted_index.97.42%, | 69 |
| abstract_inverted_index.crucial | 134 |
| abstract_inverted_index.dynamic | 94 |
| abstract_inverted_index.keeping | 140 |
| abstract_inverted_index.limited | 36 |
| abstract_inverted_index.machine | 8, 50, 103 |
| abstract_inverted_index.meeting | 126 |
| abstract_inverted_index.memory. | 20, 40 |
| abstract_inverted_index.methods | 105 |
| abstract_inverted_index.modules | 10 |
| abstract_inverted_index.propose | 45 |
| abstract_inverted_index.require | 12 |
| abstract_inverted_index.result, | 23 |
| abstract_inverted_index.results | 97 |
| abstract_inverted_index.support | 101 |
| abstract_inverted_index.systems | 138 |
| abstract_inverted_index.accuracy | 67 |
| abstract_inverted_index.achieved | 63 |
| abstract_inverted_index.artifact | 53, 120 |
| abstract_inverted_index.devices, | 33 |
| abstract_inverted_index.embedded | 136 |
| abstract_inverted_index.feasible | 28 |
| abstract_inverted_index.gradient | 6 |
| abstract_inverted_index.hardware | 137 |
| abstract_inverted_index.learning | 9 |
| abstract_inverted_index.resource | 75, 130 |
| abstract_inverted_index.systems. | 61 |
| abstract_inverted_index.wearable | 32 |
| abstract_inverted_index.accuracy. | 143 |
| abstract_inverted_index.detection | 54 |
| abstract_inverted_index.exploited | 124 |
| abstract_inverted_index.iterative | 2 |
| abstract_inverted_index.real-time | 49 |
| abstract_inverted_index.FPGA-based | 117 |
| abstract_inverted_index.classifier | 121 |
| abstract_inverted_index.functional | 57 |
| abstract_inverted_index.outperform | 98 |
| abstract_inverted_index.processing | 17, 37 |
| abstract_inverted_index.consumption | 89 |
| abstract_inverted_index.flip-flops, | 83 |
| abstract_inverted_index.utilization | 76 |
| abstract_inverted_index.constraints, | 131 |
| abstract_inverted_index.conventional | 99 |
| abstract_inverted_index.demonstrated | 114 |
| abstract_inverted_index.spectroscopy | 59 |
| abstract_inverted_index.computations, | 7 |
| abstract_inverted_index.near-infrared | 58 |
| abstract_inverted_index.classification | 66, 142 |
| abstract_inverted_index.learning-based | 51 |
| abstract_inverted_index.ultralow-power | 47 |
| abstract_inverted_index.multiplications | 4 |
| abstract_inverted_index.implementations. | 110 |
| abstract_inverted_index.state-of-the-art | 108 |
| abstract_inverted_index.field-programmable | 71 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.91195214 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |