An Unsupervised Convolutional LSTM Network (C-LSTMNet) for Lung 4D-CT Registration Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/access.2024.3396610
This study proposed a novel method for lung Four-Dimensional Computed Tomography (4D-CT) deformable image registration (DIR) called convolutional long-short term memory network (C-LSTMNet). It allowed us to capture temporal and spatial features between current and previous phases, as well as perform groupwise registration for multiple image pairs in 4D-CT datasets. The proposed registration framework utilized a recurrent neural network (RNN) to accurately predict displacement vector fields (DVFs) between multiple image pairs in an end-to-end manner, taking into account the spatiotemporal relationship between phase images. The input consisted of a sequence of Three-Dimensional Computed Tomography (3D-CT) images captured from inspiratory phase to expiratory phase within a complete breathing cycle. In this sequence, the first phase image was defined as the target image, while the other phase images were considered as moving images. Multiple C-LSTM units were stacked together to capture temporal clues between these images. The proposed C-LSTMNet was trained using 85 collected 4D-CT datasets from lung cancer patients without supervision, and its efficiency was evaluated by employing an open-source 4D-CT dataset from dir-lab. Target registration error (TRE) was measured and compared between C-LSTMNet and 4 recently published registration methods in a control group. The mean and standard deviation of TRE in C-LSTMNet were mm, which outperformed other existing deep-learning methods in the control group in this study, and the calculation time for each forward prediction was about 0.45 seconds. The preliminary results on oncologic patients demonstrated that the proposed C-LSTMNet had the potential to accurately and quickly synchronize lung 4D-CT.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2024.3396610
- https://ieeexplore.ieee.org/ielx7/6287639/6514899/10518039.pdf
- OA Status
- gold
- Cited By
- 2
- References
- 20
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396605144
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396605144Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2024.3396610Digital Object Identifier
- Title
-
An Unsupervised Convolutional LSTM Network (C-LSTMNet) for Lung 4D-CT RegistrationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Hang Zhang, Hui Peng, Haipeng Xu, Fen Zhao, Yan-Chao Lou, Juan YangList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2024.3396610Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10518039.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10518039.pdfDirect OA link when available
- Concepts
-
Artificial intelligence, Computer science, Image registration, Convolutional neural network, Pattern recognition (psychology), Computer vision, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2Per-year citation counts (last 5 years)
- References (count)
-
20Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396605144 |
|---|---|
| doi | https://doi.org/10.1109/access.2024.3396610 |
| ids.doi | https://doi.org/10.1109/access.2024.3396610 |
| ids.openalex | https://openalex.org/W4396605144 |
| fwci | 1.72524628 |
| type | article |
| title | An Unsupervised Convolutional LSTM Network (C-LSTMNet) for Lung 4D-CT Registration |
| awards[0].id | https://openalex.org/G7271979889 |
| awards[0].funder_id | https://openalex.org/F4320324174 |
| awards[0].display_name | |
| awards[0].funder_award_id | ZR2021MA058 |
| awards[0].funder_display_name | Natural Science Foundation of Shandong Province |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 64662 |
| biblio.first_page | 64654 |
| topics[0].id | https://openalex.org/T10202 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2740 |
| topics[0].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[0].display_name | Lung Cancer Diagnosis and Treatment |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9984999895095825 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T10522 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9976999759674072 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Medical Imaging Techniques and Applications |
| funders[0].id | https://openalex.org/F4320324174 |
| funders[0].ror | |
| funders[0].display_name | Natural Science Foundation of Shandong Province |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7606777548789978 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7181990742683411 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C166704113 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6875557899475098 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q861092 |
| concepts[2].display_name | Image registration |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6400032639503479 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5672507882118225 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.47639742493629456 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C115961682 |
| concepts[6].level | 2 |
| concepts[6].score | 0.3948310911655426 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[6].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7606777548789978 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7181990742683411 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/image-registration |
| keywords[2].score | 0.6875557899475098 |
| keywords[2].display_name | Image registration |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.6400032639503479 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.5672507882118225 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.47639742493629456 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/image |
| keywords[6].score | 0.3948310911655426 |
| keywords[6].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1109/access.2024.3396610 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10518039.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2024.3396610 |
| locations[1].id | pmh:oai:doaj.org/article:2e178d31f81c4fac9322df8300dc3e6c |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 12, Pp 64654-64662 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/2e178d31f81c4fac9322df8300dc3e6c |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5054734727 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-7330-5000 |
| authorships[0].author.display_name | Hang Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I28006308 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Physics and Electronics, Shandong Normal University, Jinan, China |
| authorships[0].institutions[0].id | https://openalex.org/I28006308 |
| authorships[0].institutions[0].ror | https://ror.org/01wy3h363 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I28006308 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shandong Normal University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hang Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Physics and Electronics, Shandong Normal University, Jinan, China |
| authorships[1].author.id | https://openalex.org/A5101463302 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9794-9225 |
| authorships[1].author.display_name | Hui Peng |
| authorships[1].affiliations[0].raw_affiliation_string | School of Physics and Electrical Engineering, Kashi University, Kashi, Xinjiang, China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hui Peng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Physics and Electrical Engineering, Kashi University, Kashi, Xinjiang, China |
| authorships[2].author.id | https://openalex.org/A5112801890 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Haipeng Xu |
| authorships[2].affiliations[0].raw_affiliation_string | School of Artificial Intelligence, Shandong Vocational and Technical University of Engineering, Jinan, China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Haipeng Xu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Artificial Intelligence, Shandong Vocational and Technical University of Engineering, Jinan, China |
| authorships[3].author.id | https://openalex.org/A5101463594 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5643-4260 |
| authorships[3].author.display_name | Fen Zhao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210100830, https://openalex.org/I4210163399 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210163399 |
| authorships[3].institutions[0].ror | https://ror.org/05jb9pq57 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210163399 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Shandong First Medical University |
| authorships[3].institutions[1].id | https://openalex.org/I4210100830 |
| authorships[3].institutions[1].ror | https://ror.org/01413r497 |
| authorships[3].institutions[1].type | healthcare |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210100830 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Shandong Tumor Hospital |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Fen Zhao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China |
| authorships[4].author.id | https://openalex.org/A5016979615 |
| authorships[4].author.orcid | https://orcid.org/0009-0003-5797-8368 |
| authorships[4].author.display_name | Yan-Chao Lou |
| authorships[4].affiliations[0].raw_affiliation_string | School of Physics and Electrical Engineering, Kashi University, Kashi, Xinjiang, China |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yanchao Lou |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Physics and Electrical Engineering, Kashi University, Kashi, Xinjiang, China |
| authorships[5].author.id | https://openalex.org/A5100603280 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0130-866X |
| authorships[5].author.display_name | Juan Yang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210162809 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Physics and Electrical Engineering, Kashgar University, Xinjiang, China |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I28006308 |
| authorships[5].affiliations[1].raw_affiliation_string | School of Physics and Electronics, Shandong Normal University, Jinan, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210162809 |
| authorships[5].institutions[0].ror | https://ror.org/055a4rj94 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210162809 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Kashi University |
| authorships[5].institutions[1].id | https://openalex.org/I28006308 |
| authorships[5].institutions[1].ror | https://ror.org/01wy3h363 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I28006308 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Shandong Normal University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Juan Yang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Physics and Electrical Engineering, Kashgar University, Xinjiang, China, School of Physics and Electronics, Shandong Normal University, Jinan, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10518039.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Unsupervised Convolutional LSTM Network (C-LSTMNet) for Lung 4D-CT Registration |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10202 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2740 |
| primary_topic.subfield.display_name | Pulmonary and Respiratory Medicine |
| primary_topic.display_name | Lung Cancer Diagnosis and Treatment |
| related_works | https://openalex.org/W4391621807, https://openalex.org/W4321487865, https://openalex.org/W4313906399, https://openalex.org/W4391621790, https://openalex.org/W4239306820, https://openalex.org/W4391266461, https://openalex.org/W2590798552, https://openalex.org/W2811106690, https://openalex.org/W2947043951, https://openalex.org/W4399188509 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2024.3396610 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10518039.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2024.3396610 |
| primary_location.id | doi:10.1109/access.2024.3396610 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10518039.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2024.3396610 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3083474746, https://openalex.org/W2990081072, https://openalex.org/W2891631795, https://openalex.org/W2898403737, https://openalex.org/W3005933814, https://openalex.org/W2892211927, https://openalex.org/W2805652579, https://openalex.org/W3164933060, https://openalex.org/W3093367452, https://openalex.org/W3168994942, https://openalex.org/W2889905929, https://openalex.org/W3004561498, https://openalex.org/W3015415827, https://openalex.org/W4284976699, https://openalex.org/W4386069377, https://openalex.org/W3007763359, https://openalex.org/W3110407451, https://openalex.org/W3211246267, https://openalex.org/W2126393454, https://openalex.org/W3119542966 |
| referenced_works_count | 20 |
| abstract_inverted_index.4 | 184 |
| abstract_inverted_index.a | 3, 55, 88, 104, 190 |
| abstract_inverted_index.85 | 150 |
| abstract_inverted_index.In | 108 |
| abstract_inverted_index.It | 23 |
| abstract_inverted_index.an | 72, 167 |
| abstract_inverted_index.as | 37, 39, 117, 128 |
| abstract_inverted_index.by | 165 |
| abstract_inverted_index.in | 47, 71, 189, 200, 215, 219 |
| abstract_inverted_index.of | 87, 90, 198 |
| abstract_inverted_index.on | 237 |
| abstract_inverted_index.to | 26, 60, 100, 137, 248 |
| abstract_inverted_index.us | 25 |
| abstract_inverted_index.TRE | 199 |
| abstract_inverted_index.The | 50, 84, 144, 193, 234 |
| abstract_inverted_index.and | 29, 34, 160, 179, 183, 195, 222, 250 |
| abstract_inverted_index.for | 6, 43, 226 |
| abstract_inverted_index.had | 245 |
| abstract_inverted_index.its | 161 |
| abstract_inverted_index.mm, | 208 |
| abstract_inverted_index.the | 78, 111, 118, 122, 216, 223, 242, 246 |
| abstract_inverted_index.was | 115, 147, 163, 177, 230 |
| abstract_inverted_index.0.45 | 232 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.each | 227 |
| abstract_inverted_index.from | 97, 154, 171 |
| abstract_inverted_index.into | 76 |
| abstract_inverted_index.lung | 7, 155, 253 |
| abstract_inverted_index.mean | 194 |
| abstract_inverted_index.term | 19 |
| abstract_inverted_index.that | 241 |
| abstract_inverted_index.this | 109, 220 |
| abstract_inverted_index.time | 225 |
| abstract_inverted_index.well | 38 |
| abstract_inverted_index.were | 126, 134, 202 |
| abstract_inverted_index.(DIR) | 15 |
| abstract_inverted_index.(RNN) | 59 |
| abstract_inverted_index.(TRE) | 176 |
| abstract_inverted_index.0.87$ | 206 |
| abstract_inverted_index.4D-CT | 48, 152, 169 |
| abstract_inverted_index.about | 231 |
| abstract_inverted_index.clues | 140 |
| abstract_inverted_index.error | 175 |
| abstract_inverted_index.first | 112 |
| abstract_inverted_index.group | 218 |
| abstract_inverted_index.image | 13, 45, 69, 114 |
| abstract_inverted_index.input | 85 |
| abstract_inverted_index.novel | 4 |
| abstract_inverted_index.other | 123, 211 |
| abstract_inverted_index.pairs | 46, 70 |
| abstract_inverted_index.phase | 82, 99, 102, 113, 124 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.these | 142 |
| abstract_inverted_index.units | 133 |
| abstract_inverted_index.using | 149 |
| abstract_inverted_index.which | 209 |
| abstract_inverted_index.while | 121 |
| abstract_inverted_index.(DVFs) | 66 |
| abstract_inverted_index.4D-CT. | 254 |
| abstract_inverted_index.C-LSTM | 132 |
| abstract_inverted_index.Target | 173 |
| abstract_inverted_index.called | 16 |
| abstract_inverted_index.cancer | 156 |
| abstract_inverted_index.cycle. | 107 |
| abstract_inverted_index.fields | 65 |
| abstract_inverted_index.group. | 192 |
| abstract_inverted_index.image, | 120 |
| abstract_inverted_index.images | 95, 125 |
| abstract_inverted_index.memory | 20 |
| abstract_inverted_index.method | 5 |
| abstract_inverted_index.moving | 129 |
| abstract_inverted_index.neural | 57 |
| abstract_inverted_index.study, | 221 |
| abstract_inverted_index.taking | 75 |
| abstract_inverted_index.target | 119 |
| abstract_inverted_index.vector | 64 |
| abstract_inverted_index.within | 103 |
| abstract_inverted_index.(3D-CT) | 94 |
| abstract_inverted_index.(4D-CT) | 11 |
| abstract_inverted_index.account | 77 |
| abstract_inverted_index.allowed | 24 |
| abstract_inverted_index.between | 32, 67, 81, 141, 181 |
| abstract_inverted_index.capture | 27, 138 |
| abstract_inverted_index.control | 191, 217 |
| abstract_inverted_index.current | 33 |
| abstract_inverted_index.dataset | 170 |
| abstract_inverted_index.defined | 116 |
| abstract_inverted_index.forward | 228 |
| abstract_inverted_index.images. | 83, 130, 143 |
| abstract_inverted_index.manner, | 74 |
| abstract_inverted_index.methods | 188, 214 |
| abstract_inverted_index.network | 21, 58 |
| abstract_inverted_index.perform | 40 |
| abstract_inverted_index.phases, | 36 |
| abstract_inverted_index.predict | 62 |
| abstract_inverted_index.quickly | 251 |
| abstract_inverted_index.results | 236 |
| abstract_inverted_index.spatial | 30 |
| abstract_inverted_index.stacked | 135 |
| abstract_inverted_index.trained | 148 |
| abstract_inverted_index.without | 158 |
| abstract_inverted_index.Computed | 9, 92 |
| abstract_inverted_index.Multiple | 131 |
| abstract_inverted_index.captured | 96 |
| abstract_inverted_index.compared | 180 |
| abstract_inverted_index.complete | 105 |
| abstract_inverted_index.datasets | 153 |
| abstract_inverted_index.dir-lab. | 172 |
| abstract_inverted_index.existing | 212 |
| abstract_inverted_index.features | 31 |
| abstract_inverted_index.measured | 178 |
| abstract_inverted_index.multiple | 44, 68 |
| abstract_inverted_index.patients | 157, 239 |
| abstract_inverted_index.previous | 35 |
| abstract_inverted_index.proposed | 2, 51, 145, 243 |
| abstract_inverted_index.recently | 185 |
| abstract_inverted_index.seconds. | 233 |
| abstract_inverted_index.sequence | 89 |
| abstract_inverted_index.standard | 196 |
| abstract_inverted_index.temporal | 28, 139 |
| abstract_inverted_index.together | 136 |
| abstract_inverted_index.utilized | 54 |
| abstract_inverted_index.<tex-math | 204 |
| abstract_inverted_index.C-LSTMNet | 146, 182, 201, 244 |
| abstract_inverted_index.breathing | 106 |
| abstract_inverted_index.collected | 151 |
| abstract_inverted_index.consisted | 86 |
| abstract_inverted_index.datasets. | 49 |
| abstract_inverted_index.deviation | 197 |
| abstract_inverted_index.employing | 166 |
| abstract_inverted_index.evaluated | 164 |
| abstract_inverted_index.framework | 53 |
| abstract_inverted_index.groupwise | 41 |
| abstract_inverted_index.oncologic | 238 |
| abstract_inverted_index.potential | 247 |
| abstract_inverted_index.published | 186 |
| abstract_inverted_index.recurrent | 56 |
| abstract_inverted_index.sequence, | 110 |
| abstract_inverted_index.Tomography | 10, 93 |
| abstract_inverted_index.accurately | 61, 249 |
| abstract_inverted_index.considered | 127 |
| abstract_inverted_index.deformable | 12 |
| abstract_inverted_index.efficiency | 162 |
| abstract_inverted_index.end-to-end | 73 |
| abstract_inverted_index.expiratory | 101 |
| abstract_inverted_index.long-short | 18 |
| abstract_inverted_index.prediction | 229 |
| abstract_inverted_index.calculation | 224 |
| abstract_inverted_index.inspiratory | 98 |
| abstract_inverted_index.open-source | 168 |
| abstract_inverted_index.preliminary | 235 |
| abstract_inverted_index.synchronize | 252 |
| abstract_inverted_index.(C-LSTMNet). | 22 |
| abstract_inverted_index.demonstrated | 240 |
| abstract_inverted_index.displacement | 63 |
| abstract_inverted_index.outperformed | 210 |
| abstract_inverted_index.registration | 14, 42, 52, 174, 187 |
| abstract_inverted_index.relationship | 80 |
| abstract_inverted_index.supervision, | 159 |
| abstract_inverted_index.convolutional | 17 |
| abstract_inverted_index.deep-learning | 213 |
| abstract_inverted_index.spatiotemporal | 79 |
| abstract_inverted_index.<inline-formula> | 203 |
| abstract_inverted_index.Four-Dimensional | 8 |
| abstract_inverted_index.Three-Dimensional | 91 |
| abstract_inverted_index.notation="LaTeX">$1.30\pm | 205 |
| abstract_inverted_index.</tex-math></inline-formula> | 207 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.77392184 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |