Analysing spectral lines in Gaia low-resolution spectra Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2211.06946
With its third data release, European Space Agency's Gaia mission publishes for the first time low resolution spectra for a large number of celestial objects. These spectra however differ in their nature from typical spectroscopic data. They do not consist of wavelength samples with associated flux values, but are represented by a linear combination of Hermite functions. We derive an approach to the study of spectral lines that is robust and efficient for spectra that are represented as a linear combination of Hermite functions. For this purpose, we combine established computational methods for orthogonal polynomials with the peculiar mathematical properties of Hermite functions and basic properties of the Gaia spectrophotometers. Particular use is made of the simple computation of derivatives of linear combinations of Hermite functions and their roots. A simple and efficient computational method for deriving the position in wavelength, the statistical significance, and the line strengths is presented for spectra represented by a linear combination of Hermite functions. The derived method is fast and robust enough to be applied to large numbers of Gaia spectra without high performance computing resources or human interaction. Example applications to hydrogen Balmer lines, He I lines, and a broad interstellar band in Gaia DR3 low resolution spectra are presented.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2211.06946
- https://arxiv.org/pdf/2211.06946
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4309131882
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4309131882Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2211.06946Digital Object Identifier
- Title
-
Analysing spectral lines in Gaia low-resolution spectraWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-13Full publication date if available
- Authors
-
M. Weiler, J. M. Carrasco, C. Fabricius, C. JordiList of authors in order
- Landing page
-
https://arxiv.org/abs/2211.06946Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2211.06946Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2211.06946Direct OA link when available
- Concepts
-
Hermite polynomials, Spectral line, Computation, Balmer series, Hermite interpolation, Position (finance), Physics, Computational physics, Algorithm, Computer science, Mathematics, Mathematical analysis, Emission spectrum, Astronomy, Economics, FinanceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4309131882 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2211.06946 |
| ids.doi | https://doi.org/10.48550/arxiv.2211.06946 |
| ids.openalex | https://openalex.org/W4309131882 |
| fwci | 0.0 |
| type | preprint |
| title | Analysing spectral lines in Gaia low-resolution spectra |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12157 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9196000099182129 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Geochemistry and Geologic Mapping |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C201362023 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8455219268798828 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q658574 |
| concepts[0].display_name | Hermite polynomials |
| concepts[1].id | https://openalex.org/C4839761 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7098970413208008 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q212111 |
| concepts[1].display_name | Spectral line |
| concepts[2].id | https://openalex.org/C45374587 |
| concepts[2].level | 2 |
| concepts[2].score | 0.581065833568573 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[2].display_name | Computation |
| concepts[3].id | https://openalex.org/C173220165 |
| concepts[3].level | 4 |
| concepts[3].score | 0.5521607398986816 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q653711 |
| concepts[3].display_name | Balmer series |
| concepts[4].id | https://openalex.org/C186429297 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4685415029525757 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q44451 |
| concepts[4].display_name | Hermite interpolation |
| concepts[5].id | https://openalex.org/C198082294 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46462923288345337 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3399648 |
| concepts[5].display_name | Position (finance) |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.39652037620544434 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C30475298 |
| concepts[7].level | 1 |
| concepts[7].score | 0.37918621301651 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q909554 |
| concepts[7].display_name | Computational physics |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.30143797397613525 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3010154068470001 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2992401719093323 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C134306372 |
| concepts[11].level | 1 |
| concepts[11].score | 0.24141636490821838 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[11].display_name | Mathematical analysis |
| concepts[12].id | https://openalex.org/C96141758 |
| concepts[12].level | 3 |
| concepts[12].score | 0.11833998560905457 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q216817 |
| concepts[12].display_name | Emission spectrum |
| concepts[13].id | https://openalex.org/C1276947 |
| concepts[13].level | 1 |
| concepts[13].score | 0.08141925930976868 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[13].display_name | Astronomy |
| concepts[14].id | https://openalex.org/C162324750 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[14].display_name | Economics |
| concepts[15].id | https://openalex.org/C10138342 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[15].display_name | Finance |
| keywords[0].id | https://openalex.org/keywords/hermite-polynomials |
| keywords[0].score | 0.8455219268798828 |
| keywords[0].display_name | Hermite polynomials |
| keywords[1].id | https://openalex.org/keywords/spectral-line |
| keywords[1].score | 0.7098970413208008 |
| keywords[1].display_name | Spectral line |
| keywords[2].id | https://openalex.org/keywords/computation |
| keywords[2].score | 0.581065833568573 |
| keywords[2].display_name | Computation |
| keywords[3].id | https://openalex.org/keywords/balmer-series |
| keywords[3].score | 0.5521607398986816 |
| keywords[3].display_name | Balmer series |
| keywords[4].id | https://openalex.org/keywords/hermite-interpolation |
| keywords[4].score | 0.4685415029525757 |
| keywords[4].display_name | Hermite interpolation |
| keywords[5].id | https://openalex.org/keywords/position |
| keywords[5].score | 0.46462923288345337 |
| keywords[5].display_name | Position (finance) |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.39652037620544434 |
| keywords[6].display_name | Physics |
| keywords[7].id | https://openalex.org/keywords/computational-physics |
| keywords[7].score | 0.37918621301651 |
| keywords[7].display_name | Computational physics |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.30143797397613525 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.3010154068470001 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.2992401719093323 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[11].score | 0.24141636490821838 |
| keywords[11].display_name | Mathematical analysis |
| keywords[12].id | https://openalex.org/keywords/emission-spectrum |
| keywords[12].score | 0.11833998560905457 |
| keywords[12].display_name | Emission spectrum |
| keywords[13].id | https://openalex.org/keywords/astronomy |
| keywords[13].score | 0.08141925930976868 |
| keywords[13].display_name | Astronomy |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2211.06946 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2211.06946 |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2211.06946 |
| locations[1].id | doi:10.48550/arxiv.2211.06946 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2211.06946 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5037250136 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3007-3927 |
| authorships[0].author.display_name | M. Weiler |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Weiler, Michael |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5058211543 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3029-5853 |
| authorships[1].author.display_name | J. M. Carrasco |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Carrasco, Josep Manel |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5030098687 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2639-1372 |
| authorships[2].author.display_name | C. Fabricius |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fabricius, Claus |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5052557348 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5495-9602 |
| authorships[3].author.display_name | C. Jordi |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jordi, Carme |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2211.06946 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Analysing spectral lines in Gaia low-resolution spectra |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12157 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9196000099182129 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Geochemistry and Geologic Mapping |
| related_works | https://openalex.org/W1611524765, https://openalex.org/W2358067891, https://openalex.org/W4384827542, https://openalex.org/W2362691724, https://openalex.org/W2076442606, https://openalex.org/W2105326322, https://openalex.org/W1629396682, https://openalex.org/W2562925856, https://openalex.org/W2799944245, https://openalex.org/W60612525 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2211.06946 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2211.06946 |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2211.06946 |
| primary_location.id | pmh:oai:arXiv.org:2211.06946 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2211.06946 |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2211.06946 |
| publication_date | 2022-11-13 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 129 |
| abstract_inverted_index.I | 192 |
| abstract_inverted_index.a | 19, 51, 78, 154, 195 |
| abstract_inverted_index.He | 191 |
| abstract_inverted_index.We | 57 |
| abstract_inverted_index.an | 59 |
| abstract_inverted_index.as | 77 |
| abstract_inverted_index.be | 169 |
| abstract_inverted_index.by | 50, 153 |
| abstract_inverted_index.do | 37 |
| abstract_inverted_index.in | 29, 139, 199 |
| abstract_inverted_index.is | 68, 112, 148, 163 |
| abstract_inverted_index.of | 22, 40, 54, 64, 81, 100, 106, 114, 118, 120, 123, 157, 174 |
| abstract_inverted_index.or | 182 |
| abstract_inverted_index.to | 61, 168, 171, 187 |
| abstract_inverted_index.we | 87 |
| abstract_inverted_index.DR3 | 201 |
| abstract_inverted_index.For | 84 |
| abstract_inverted_index.The | 160 |
| abstract_inverted_index.and | 70, 103, 126, 131, 144, 165, 194 |
| abstract_inverted_index.are | 48, 75, 205 |
| abstract_inverted_index.but | 47 |
| abstract_inverted_index.for | 11, 18, 72, 92, 135, 150 |
| abstract_inverted_index.its | 1 |
| abstract_inverted_index.low | 15, 202 |
| abstract_inverted_index.not | 38 |
| abstract_inverted_index.the | 12, 62, 96, 107, 115, 137, 141, 145 |
| abstract_inverted_index.use | 111 |
| abstract_inverted_index.Gaia | 8, 108, 175, 200 |
| abstract_inverted_index.They | 36 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.band | 198 |
| abstract_inverted_index.data | 3 |
| abstract_inverted_index.fast | 164 |
| abstract_inverted_index.flux | 45 |
| abstract_inverted_index.from | 32 |
| abstract_inverted_index.high | 178 |
| abstract_inverted_index.line | 146 |
| abstract_inverted_index.made | 113 |
| abstract_inverted_index.that | 67, 74 |
| abstract_inverted_index.this | 85 |
| abstract_inverted_index.time | 14 |
| abstract_inverted_index.with | 43, 95 |
| abstract_inverted_index.Space | 6 |
| abstract_inverted_index.These | 25 |
| abstract_inverted_index.basic | 104 |
| abstract_inverted_index.broad | 196 |
| abstract_inverted_index.data. | 35 |
| abstract_inverted_index.first | 13 |
| abstract_inverted_index.human | 183 |
| abstract_inverted_index.large | 20, 172 |
| abstract_inverted_index.lines | 66 |
| abstract_inverted_index.study | 63 |
| abstract_inverted_index.their | 30, 127 |
| abstract_inverted_index.third | 2 |
| abstract_inverted_index.Balmer | 189 |
| abstract_inverted_index.derive | 58 |
| abstract_inverted_index.differ | 28 |
| abstract_inverted_index.enough | 167 |
| abstract_inverted_index.linear | 52, 79, 121, 155 |
| abstract_inverted_index.lines, | 190, 193 |
| abstract_inverted_index.method | 134, 162 |
| abstract_inverted_index.nature | 31 |
| abstract_inverted_index.number | 21 |
| abstract_inverted_index.robust | 69, 166 |
| abstract_inverted_index.roots. | 128 |
| abstract_inverted_index.simple | 116, 130 |
| abstract_inverted_index.Example | 185 |
| abstract_inverted_index.Hermite | 55, 82, 101, 124, 158 |
| abstract_inverted_index.applied | 170 |
| abstract_inverted_index.combine | 88 |
| abstract_inverted_index.consist | 39 |
| abstract_inverted_index.derived | 161 |
| abstract_inverted_index.however | 27 |
| abstract_inverted_index.methods | 91 |
| abstract_inverted_index.mission | 9 |
| abstract_inverted_index.numbers | 173 |
| abstract_inverted_index.samples | 42 |
| abstract_inverted_index.spectra | 17, 26, 73, 151, 176, 204 |
| abstract_inverted_index.typical | 33 |
| abstract_inverted_index.values, | 46 |
| abstract_inverted_index.without | 177 |
| abstract_inverted_index.Agency's | 7 |
| abstract_inverted_index.European | 5 |
| abstract_inverted_index.approach | 60 |
| abstract_inverted_index.deriving | 136 |
| abstract_inverted_index.hydrogen | 188 |
| abstract_inverted_index.objects. | 24 |
| abstract_inverted_index.peculiar | 97 |
| abstract_inverted_index.position | 138 |
| abstract_inverted_index.purpose, | 86 |
| abstract_inverted_index.release, | 4 |
| abstract_inverted_index.spectral | 65 |
| abstract_inverted_index.celestial | 23 |
| abstract_inverted_index.computing | 180 |
| abstract_inverted_index.efficient | 71, 132 |
| abstract_inverted_index.functions | 102, 125 |
| abstract_inverted_index.presented | 149 |
| abstract_inverted_index.publishes | 10 |
| abstract_inverted_index.resources | 181 |
| abstract_inverted_index.strengths | 147 |
| abstract_inverted_index.Particular | 110 |
| abstract_inverted_index.associated | 44 |
| abstract_inverted_index.functions. | 56, 83, 159 |
| abstract_inverted_index.orthogonal | 93 |
| abstract_inverted_index.presented. | 206 |
| abstract_inverted_index.properties | 99, 105 |
| abstract_inverted_index.resolution | 16, 203 |
| abstract_inverted_index.wavelength | 41 |
| abstract_inverted_index.combination | 53, 80, 156 |
| abstract_inverted_index.computation | 117 |
| abstract_inverted_index.derivatives | 119 |
| abstract_inverted_index.established | 89 |
| abstract_inverted_index.performance | 179 |
| abstract_inverted_index.polynomials | 94 |
| abstract_inverted_index.represented | 49, 76, 152 |
| abstract_inverted_index.statistical | 142 |
| abstract_inverted_index.wavelength, | 140 |
| abstract_inverted_index.applications | 186 |
| abstract_inverted_index.combinations | 122 |
| abstract_inverted_index.interaction. | 184 |
| abstract_inverted_index.interstellar | 197 |
| abstract_inverted_index.mathematical | 98 |
| abstract_inverted_index.computational | 90, 133 |
| abstract_inverted_index.significance, | 143 |
| abstract_inverted_index.spectroscopic | 34 |
| abstract_inverted_index.spectrophotometers. | 109 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.13577514 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |