Analysis and Algorithm for Multi IRS Collaborative Localization via Hybrid Time Angle Estimation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.03133
This paper proposes a novel multiple intelligent reflecting surfaces (IRSs) collaborative hybrid localization system, which involves deploying multiple IRSs near the target area and achieving target localization through joint time delay and angle estimation. Specifically, echo signals from all reflective elements are received by each sensor and jointly processed to estimate the time delay and angle parameters. Based on the above model, we derive the Fisher Information Matrix (FIM) for cascaded delay, Angle of Arrival (AOA), and Angle of Departure (AOD) estimation in semi passive passive models, along with the corresponding Cramer Rao Bound (CRB). To achieve precise estimation close to the CRB, we design efficient algorithms for angle and location estimation. For angle estimation, reflective signals are categorized into three cases based on their rank, with different signal preprocessing. By constructing an atomic norm set and minimizing the atomic norm, the joint angle estimation problem is transformed into a convex optimization problem, and low-complexity estimation of multiple AOA and AOD pairs is achieved using the Alternating Direction Method of Multipliers (ADMM). For location estimation, we propose a three-stage localization algorithm that combines weighted least squares, total least squares, and quadratic correction to handle errors in the coefficient matrix and observation vector, thus improving accuracy. Numerical simulations validate the superiority of the proposed system, demonstrating that the system's collaboration, hybrid localization, and distributed deployment provide substantial benefits, as well as the accuracy of the proposed estimation algorithms, particularly in low signal to noise ratio (SNR) condition.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2511.03133
- https://arxiv.org/pdf/2511.03133
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416018554
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416018554Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.03133Digital Object Identifier
- Title
-
Analysis and Algorithm for Multi IRS Collaborative Localization via Hybrid Time Angle EstimationWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-05Full publication date if available
- Authors
-
Ziheng Zhang, Wen Chen, Qingqing Wu, Haoran Qin, Qiang Li, Qiong WuList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.03133Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.03133Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.03133Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416018554 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.03133 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.03133 |
| ids.openalex | https://openalex.org/W4416018554 |
| fwci | |
| type | preprint |
| title | Analysis and Algorithm for Multi IRS Collaborative Localization via Hybrid Time Angle Estimation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.03133 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.03133 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.03133 |
| locations[1].id | doi:10.48550/arxiv.2511.03133 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2511.03133 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100613120 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5938-4729 |
| authorships[0].author.display_name | Ziheng Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Ziheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5009339011 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6603-0056 |
| authorships[1].author.display_name | Wen Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Wen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5048817096 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0043-3266 |
| authorships[2].author.display_name | Qingqing Wu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wu, Qingqing |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101558908 |
| authorships[3].author.orcid | https://orcid.org/0009-0007-4789-5488 |
| authorships[3].author.display_name | Haoran Qin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Qin, Haoran |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100429975 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4384-8226 |
| authorships[4].author.display_name | Qiang Li |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Li, Zhendong |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101612846 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4085-5180 |
| authorships[5].author.display_name | Qiong Wu |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Wu, Qiong |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.03133 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-07T00:00:00 |
| display_name | Analysis and Algorithm for Multi IRS Collaborative Localization via Hybrid Time Angle Estimation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-09T23:09:16.995542 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.03133 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.03133 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.03133 |
| primary_location.id | pmh:oai:arXiv.org:2511.03133 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.03133 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.03133 |
| publication_date | 2025-11-05 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 149, 177 |
| abstract_inverted_index.By | 130 |
| abstract_inverted_index.To | 95 |
| abstract_inverted_index.an | 132 |
| abstract_inverted_index.as | 227, 229 |
| abstract_inverted_index.by | 43 |
| abstract_inverted_index.in | 82, 195, 238 |
| abstract_inverted_index.is | 146, 162 |
| abstract_inverted_index.of | 73, 78, 156, 169, 210, 232 |
| abstract_inverted_index.on | 58, 123 |
| abstract_inverted_index.to | 49, 100, 192, 241 |
| abstract_inverted_index.we | 62, 103, 175 |
| abstract_inverted_index.AOA | 158 |
| abstract_inverted_index.AOD | 160 |
| abstract_inverted_index.For | 112, 172 |
| abstract_inverted_index.Rao | 92 |
| abstract_inverted_index.all | 38 |
| abstract_inverted_index.and | 23, 31, 46, 54, 76, 109, 136, 153, 159, 189, 199, 221 |
| abstract_inverted_index.are | 41, 117 |
| abstract_inverted_index.for | 69, 107 |
| abstract_inverted_index.low | 239 |
| abstract_inverted_index.set | 135 |
| abstract_inverted_index.the | 20, 51, 59, 64, 89, 101, 138, 141, 165, 196, 208, 211, 216, 230, 233 |
| abstract_inverted_index.CRB, | 102 |
| abstract_inverted_index.IRSs | 18 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.area | 22 |
| abstract_inverted_index.each | 44 |
| abstract_inverted_index.echo | 35 |
| abstract_inverted_index.from | 37 |
| abstract_inverted_index.into | 119, 148 |
| abstract_inverted_index.near | 19 |
| abstract_inverted_index.norm | 134 |
| abstract_inverted_index.semi | 83 |
| abstract_inverted_index.that | 181, 215 |
| abstract_inverted_index.thus | 202 |
| abstract_inverted_index.time | 29, 52 |
| abstract_inverted_index.well | 228 |
| abstract_inverted_index.with | 88, 126 |
| abstract_inverted_index.(AOD) | 80 |
| abstract_inverted_index.(FIM) | 68 |
| abstract_inverted_index.(SNR) | 244 |
| abstract_inverted_index.Angle | 72, 77 |
| abstract_inverted_index.Based | 57 |
| abstract_inverted_index.Bound | 93 |
| abstract_inverted_index.above | 60 |
| abstract_inverted_index.along | 87 |
| abstract_inverted_index.angle | 32, 55, 108, 113, 143 |
| abstract_inverted_index.based | 122 |
| abstract_inverted_index.cases | 121 |
| abstract_inverted_index.close | 99 |
| abstract_inverted_index.delay | 30, 53 |
| abstract_inverted_index.joint | 28, 142 |
| abstract_inverted_index.least | 184, 187 |
| abstract_inverted_index.noise | 242 |
| abstract_inverted_index.norm, | 140 |
| abstract_inverted_index.novel | 4 |
| abstract_inverted_index.pairs | 161 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.rank, | 125 |
| abstract_inverted_index.ratio | 243 |
| abstract_inverted_index.their | 124 |
| abstract_inverted_index.three | 120 |
| abstract_inverted_index.total | 186 |
| abstract_inverted_index.using | 164 |
| abstract_inverted_index.which | 14 |
| abstract_inverted_index.(AOA), | 75 |
| abstract_inverted_index.(CRB). | 94 |
| abstract_inverted_index.(IRSs) | 9 |
| abstract_inverted_index.Cramer | 91 |
| abstract_inverted_index.Fisher | 65 |
| abstract_inverted_index.Matrix | 67 |
| abstract_inverted_index.Method | 168 |
| abstract_inverted_index.atomic | 133, 139 |
| abstract_inverted_index.convex | 150 |
| abstract_inverted_index.delay, | 71 |
| abstract_inverted_index.derive | 63 |
| abstract_inverted_index.design | 104 |
| abstract_inverted_index.errors | 194 |
| abstract_inverted_index.handle | 193 |
| abstract_inverted_index.hybrid | 11, 219 |
| abstract_inverted_index.matrix | 198 |
| abstract_inverted_index.model, | 61 |
| abstract_inverted_index.sensor | 45 |
| abstract_inverted_index.signal | 128, 240 |
| abstract_inverted_index.target | 21, 25 |
| abstract_inverted_index.(ADMM). | 171 |
| abstract_inverted_index.Arrival | 74 |
| abstract_inverted_index.achieve | 96 |
| abstract_inverted_index.jointly | 47 |
| abstract_inverted_index.models, | 86 |
| abstract_inverted_index.passive | 84, 85 |
| abstract_inverted_index.precise | 97 |
| abstract_inverted_index.problem | 145 |
| abstract_inverted_index.propose | 176 |
| abstract_inverted_index.provide | 224 |
| abstract_inverted_index.signals | 36, 116 |
| abstract_inverted_index.system, | 13, 213 |
| abstract_inverted_index.through | 27 |
| abstract_inverted_index.vector, | 201 |
| abstract_inverted_index.accuracy | 231 |
| abstract_inverted_index.achieved | 163 |
| abstract_inverted_index.cascaded | 70 |
| abstract_inverted_index.combines | 182 |
| abstract_inverted_index.elements | 40 |
| abstract_inverted_index.estimate | 50 |
| abstract_inverted_index.involves | 15 |
| abstract_inverted_index.location | 110, 173 |
| abstract_inverted_index.multiple | 5, 17, 157 |
| abstract_inverted_index.problem, | 152 |
| abstract_inverted_index.proposed | 212, 234 |
| abstract_inverted_index.proposes | 2 |
| abstract_inverted_index.received | 42 |
| abstract_inverted_index.squares, | 185, 188 |
| abstract_inverted_index.surfaces | 8 |
| abstract_inverted_index.system's | 217 |
| abstract_inverted_index.validate | 207 |
| abstract_inverted_index.weighted | 183 |
| abstract_inverted_index.Departure | 79 |
| abstract_inverted_index.Direction | 167 |
| abstract_inverted_index.Numerical | 205 |
| abstract_inverted_index.accuracy. | 204 |
| abstract_inverted_index.achieving | 24 |
| abstract_inverted_index.algorithm | 180 |
| abstract_inverted_index.benefits, | 226 |
| abstract_inverted_index.deploying | 16 |
| abstract_inverted_index.different | 127 |
| abstract_inverted_index.efficient | 105 |
| abstract_inverted_index.improving | 203 |
| abstract_inverted_index.processed | 48 |
| abstract_inverted_index.quadratic | 190 |
| abstract_inverted_index.algorithms | 106 |
| abstract_inverted_index.condition. | 245 |
| abstract_inverted_index.correction | 191 |
| abstract_inverted_index.deployment | 223 |
| abstract_inverted_index.estimation | 81, 98, 144, 155, 235 |
| abstract_inverted_index.minimizing | 137 |
| abstract_inverted_index.reflecting | 7 |
| abstract_inverted_index.reflective | 39, 115 |
| abstract_inverted_index.Alternating | 166 |
| abstract_inverted_index.Information | 66 |
| abstract_inverted_index.Multipliers | 170 |
| abstract_inverted_index.algorithms, | 236 |
| abstract_inverted_index.categorized | 118 |
| abstract_inverted_index.coefficient | 197 |
| abstract_inverted_index.distributed | 222 |
| abstract_inverted_index.estimation, | 114, 174 |
| abstract_inverted_index.estimation. | 33, 111 |
| abstract_inverted_index.intelligent | 6 |
| abstract_inverted_index.observation | 200 |
| abstract_inverted_index.parameters. | 56 |
| abstract_inverted_index.simulations | 206 |
| abstract_inverted_index.substantial | 225 |
| abstract_inverted_index.superiority | 209 |
| abstract_inverted_index.three-stage | 178 |
| abstract_inverted_index.transformed | 147 |
| abstract_inverted_index.constructing | 131 |
| abstract_inverted_index.localization | 12, 26, 179 |
| abstract_inverted_index.optimization | 151 |
| abstract_inverted_index.particularly | 237 |
| abstract_inverted_index.Specifically, | 34 |
| abstract_inverted_index.collaborative | 10 |
| abstract_inverted_index.corresponding | 90 |
| abstract_inverted_index.demonstrating | 214 |
| abstract_inverted_index.localization, | 220 |
| abstract_inverted_index.collaboration, | 218 |
| abstract_inverted_index.low-complexity | 154 |
| abstract_inverted_index.preprocessing. | 129 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |