Analysis and Clustering of Poverty Levels by Education in Cimahi City Using the BIRCH Method (Balanced Iterative Reducing and Clustering using Hierarchies) Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.47709/brilliance.v5i1.5631
Poverty is an important issue for the local government of Cimahi City, mainly caused by the low level of education of the community and unequal access to quality educational facilities. Given the role of education in influencing the economic condition of the community, this study aims to examine the causes of poverty. Demographic factors such as income, social economic status, and educational attainment are examined in this study using data from the Education Department and Social Department of Cimahi City from 2019 to 2024. There are three poverty levels categorized based on the BIRCH method high, medium, and low. Cigugur Tengah and Leuwigajah area have a majority of residents with a high school education or less and a high poverty rate, while Baros and Padasuka Urban Village have a majority of residents with a D3-D4 education and a low poverty rate. However, the clustering results of the BIRCH method only yielded an accuracy of 43%, which shows that this model is not optimal in clustering poverty levels. According to these results, a region's chance of overcoming poverty increases with the average educational level of its population. The results of this study indicate that education plays an important role in helping people out of poverty. Therefore, the expansion of educational opportunities and an increase in public awareness of the value of education are key solutions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.47709/brilliance.v5i1.5631
- https://jurnal.itscience.org/index.php/brilliance/article/download/5631/4261
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412527874
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412527874Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.47709/brilliance.v5i1.5631Digital Object Identifier
- Title
-
Analysis and Clustering of Poverty Levels by Education in Cimahi City Using the BIRCH Method (Balanced Iterative Reducing and Clustering using Hierarchies)Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-24Full publication date if available
- Authors
-
Fadhilla Artamevia Putri Ristiawan, Ari WibowoList of authors in order
- Landing page
-
https://doi.org/10.47709/brilliance.v5i1.5631Publisher landing page
- PDF URL
-
https://jurnal.itscience.org/index.php/brilliance/article/download/5631/4261Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://jurnal.itscience.org/index.php/brilliance/article/download/5631/4261Direct OA link when available
- Concepts
-
Cluster analysis, Poverty, Computer science, Mathematics, Economics, Artificial intelligence, Economic growthTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412527874 |
|---|---|
| doi | https://doi.org/10.47709/brilliance.v5i1.5631 |
| ids.doi | https://doi.org/10.47709/brilliance.v5i1.5631 |
| ids.openalex | https://openalex.org/W4412527874 |
| fwci | 0.0 |
| type | article |
| title | Analysis and Clustering of Poverty Levels by Education in Cimahi City Using the BIRCH Method (Balanced Iterative Reducing and Clustering using Hierarchies) |
| biblio.issue | 1 |
| biblio.volume | 5 |
| biblio.last_page | 20 |
| biblio.first_page | 12 |
| topics[0].id | https://openalex.org/T13373 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8956000208854675 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Data Mining and Machine Learning Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C73555534 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7938048839569092 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[0].display_name | Cluster analysis |
| concepts[1].id | https://openalex.org/C189326681 |
| concepts[1].level | 2 |
| concepts[1].score | 0.45207738876342773 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10294 |
| concepts[1].display_name | Poverty |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.3711531162261963 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.33179137110710144 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C162324750 |
| concepts[4].level | 0 |
| concepts[4].score | 0.2366364598274231 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[4].display_name | Economics |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.21113267540931702 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C50522688 |
| concepts[6].level | 1 |
| concepts[6].score | 0.14878100156784058 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[6].display_name | Economic growth |
| keywords[0].id | https://openalex.org/keywords/cluster-analysis |
| keywords[0].score | 0.7938048839569092 |
| keywords[0].display_name | Cluster analysis |
| keywords[1].id | https://openalex.org/keywords/poverty |
| keywords[1].score | 0.45207738876342773 |
| keywords[1].display_name | Poverty |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.3711531162261963 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.33179137110710144 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/economics |
| keywords[4].score | 0.2366364598274231 |
| keywords[4].display_name | Economics |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.21113267540931702 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/economic-growth |
| keywords[6].score | 0.14878100156784058 |
| keywords[6].display_name | Economic growth |
| language | en |
| locations[0].id | doi:10.47709/brilliance.v5i1.5631 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210179222 |
| locations[0].source.issn | 2807-9035 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2807-9035 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Brilliance Research of Artificial Intelligence |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://jurnal.itscience.org/index.php/brilliance/article/download/5631/4261 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Brilliance: Research of Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.47709/brilliance.v5i1.5631 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5119027131 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Fadhilla Artamevia Putri Ristiawan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fadhilla Artamevia Putri Ristiawan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5089482592 |
| authorships[1].author.orcid | https://orcid.org/0009-0009-8248-5163 |
| authorships[1].author.display_name | Ari Wibowo |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Ari Purno Wahyu Wibowo |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://jurnal.itscience.org/index.php/brilliance/article/download/5631/4261 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Analysis and Clustering of Poverty Levels by Education in Cimahi City Using the BIRCH Method (Balanced Iterative Reducing and Clustering using Hierarchies) |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13373 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8956000208854675 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Data Mining and Machine Learning Applications |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.47709/brilliance.v5i1.5631 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210179222 |
| best_oa_location.source.issn | 2807-9035 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2807-9035 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Brilliance Research of Artificial Intelligence |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://jurnal.itscience.org/index.php/brilliance/article/download/5631/4261 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Brilliance: Research of Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.47709/brilliance.v5i1.5631 |
| primary_location.id | doi:10.47709/brilliance.v5i1.5631 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210179222 |
| primary_location.source.issn | 2807-9035 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2807-9035 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Brilliance Research of Artificial Intelligence |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://jurnal.itscience.org/index.php/brilliance/article/download/5631/4261 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Brilliance: Research of Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.47709/brilliance.v5i1.5631 |
| publication_date | 2025-03-24 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 105, 110, 117, 128, 133, 137, 171 |
| abstract_inverted_index.an | 2, 151, 195, 211 |
| abstract_inverted_index.as | 55 |
| abstract_inverted_index.by | 14 |
| abstract_inverted_index.in | 35, 65, 163, 198, 213 |
| abstract_inverted_index.is | 1, 160 |
| abstract_inverted_index.of | 9, 18, 20, 33, 40, 50, 77, 107, 130, 145, 153, 174, 183, 188, 202, 207, 216, 219 |
| abstract_inverted_index.on | 91 |
| abstract_inverted_index.or | 114 |
| abstract_inverted_index.to | 26, 46, 82, 168 |
| abstract_inverted_index.The | 186 |
| abstract_inverted_index.and | 23, 60, 74, 97, 101, 116, 123, 136, 210 |
| abstract_inverted_index.are | 63, 85, 221 |
| abstract_inverted_index.for | 5 |
| abstract_inverted_index.its | 184 |
| abstract_inverted_index.key | 222 |
| abstract_inverted_index.low | 16, 138 |
| abstract_inverted_index.not | 161 |
| abstract_inverted_index.out | 201 |
| abstract_inverted_index.the | 6, 15, 21, 31, 37, 41, 48, 71, 92, 142, 146, 179, 205, 217 |
| abstract_inverted_index.2019 | 81 |
| abstract_inverted_index.43%, | 154 |
| abstract_inverted_index.City | 79 |
| abstract_inverted_index.aims | 45 |
| abstract_inverted_index.area | 103 |
| abstract_inverted_index.data | 69 |
| abstract_inverted_index.from | 70, 80 |
| abstract_inverted_index.have | 104, 127 |
| abstract_inverted_index.high | 111, 118 |
| abstract_inverted_index.less | 115 |
| abstract_inverted_index.low. | 98 |
| abstract_inverted_index.only | 149 |
| abstract_inverted_index.role | 32, 197 |
| abstract_inverted_index.such | 54 |
| abstract_inverted_index.that | 157, 192 |
| abstract_inverted_index.this | 43, 66, 158, 189 |
| abstract_inverted_index.with | 109, 132, 178 |
| abstract_inverted_index.2024. | 83 |
| abstract_inverted_index.BIRCH | 93, 147 |
| abstract_inverted_index.Baros | 122 |
| abstract_inverted_index.City, | 11 |
| abstract_inverted_index.D3-D4 | 134 |
| abstract_inverted_index.Given | 30 |
| abstract_inverted_index.There | 84 |
| abstract_inverted_index.Urban | 125 |
| abstract_inverted_index.based | 90 |
| abstract_inverted_index.high, | 95 |
| abstract_inverted_index.issue | 4 |
| abstract_inverted_index.level | 17, 182 |
| abstract_inverted_index.local | 7 |
| abstract_inverted_index.model | 159 |
| abstract_inverted_index.plays | 194 |
| abstract_inverted_index.rate, | 120 |
| abstract_inverted_index.rate. | 140 |
| abstract_inverted_index.shows | 156 |
| abstract_inverted_index.study | 44, 67, 190 |
| abstract_inverted_index.these | 169 |
| abstract_inverted_index.three | 86 |
| abstract_inverted_index.using | 68 |
| abstract_inverted_index.value | 218 |
| abstract_inverted_index.which | 155 |
| abstract_inverted_index.while | 121 |
| abstract_inverted_index.Cimahi | 10, 78 |
| abstract_inverted_index.Social | 75 |
| abstract_inverted_index.Tengah | 100 |
| abstract_inverted_index.access | 25 |
| abstract_inverted_index.caused | 13 |
| abstract_inverted_index.causes | 49 |
| abstract_inverted_index.chance | 173 |
| abstract_inverted_index.levels | 88 |
| abstract_inverted_index.mainly | 12 |
| abstract_inverted_index.method | 94, 148 |
| abstract_inverted_index.people | 200 |
| abstract_inverted_index.public | 214 |
| abstract_inverted_index.school | 112 |
| abstract_inverted_index.social | 57 |
| abstract_inverted_index.Cigugur | 99 |
| abstract_inverted_index.Poverty | 0 |
| abstract_inverted_index.Village | 126 |
| abstract_inverted_index.average | 180 |
| abstract_inverted_index.examine | 47 |
| abstract_inverted_index.factors | 53 |
| abstract_inverted_index.helping | 199 |
| abstract_inverted_index.income, | 56 |
| abstract_inverted_index.levels. | 166 |
| abstract_inverted_index.medium, | 96 |
| abstract_inverted_index.optimal | 162 |
| abstract_inverted_index.poverty | 87, 119, 139, 165, 176 |
| abstract_inverted_index.quality | 27 |
| abstract_inverted_index.results | 144, 187 |
| abstract_inverted_index.status, | 59 |
| abstract_inverted_index.unequal | 24 |
| abstract_inverted_index.yielded | 150 |
| abstract_inverted_index.However, | 141 |
| abstract_inverted_index.Padasuka | 124 |
| abstract_inverted_index.accuracy | 152 |
| abstract_inverted_index.economic | 38, 58 |
| abstract_inverted_index.examined | 64 |
| abstract_inverted_index.increase | 212 |
| abstract_inverted_index.indicate | 191 |
| abstract_inverted_index.majority | 106, 129 |
| abstract_inverted_index.poverty. | 51, 203 |
| abstract_inverted_index.region's | 172 |
| abstract_inverted_index.results, | 170 |
| abstract_inverted_index.According | 167 |
| abstract_inverted_index.Education | 72 |
| abstract_inverted_index.awareness | 215 |
| abstract_inverted_index.community | 22 |
| abstract_inverted_index.condition | 39 |
| abstract_inverted_index.education | 19, 34, 113, 135, 193, 220 |
| abstract_inverted_index.expansion | 206 |
| abstract_inverted_index.important | 3, 196 |
| abstract_inverted_index.increases | 177 |
| abstract_inverted_index.residents | 108, 131 |
| abstract_inverted_index.Department | 73, 76 |
| abstract_inverted_index.Leuwigajah | 102 |
| abstract_inverted_index.Therefore, | 204 |
| abstract_inverted_index.attainment | 62 |
| abstract_inverted_index.clustering | 143, 164 |
| abstract_inverted_index.community, | 42 |
| abstract_inverted_index.government | 8 |
| abstract_inverted_index.overcoming | 175 |
| abstract_inverted_index.solutions. | 223 |
| abstract_inverted_index.Demographic | 52 |
| abstract_inverted_index.categorized | 89 |
| abstract_inverted_index.educational | 28, 61, 181, 208 |
| abstract_inverted_index.facilities. | 29 |
| abstract_inverted_index.influencing | 36 |
| abstract_inverted_index.population. | 185 |
| abstract_inverted_index.opportunities | 209 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.39322749 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |