Analysis Methods for Supersaturated Design: Some Comparisons Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.6339/jds.2003.01(3).134
Supersaturated designs are very cost-effective with respect to the number of runs and as such are highly desirable in many preliminary studies in industrial experimentation.Variable selection plays an important role in analyzing data from the supersaturated designs.Traditional approaches, such as the best subset variable selection and stepwise regression, may not be appropriate in this situation.In this paper, we introduce a variable selection procedure to screen active effects in the SSDs via nonconvex penalized least squares approach.Empirical comparison with Bayesian variable selection approaches is conducted.Our simulation shows that the nonconvex penalized least squares method compares very favorably with the Bayesian variable selection approach proposed in Beattie, Fong and Lin (2001).
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.6339/jds.2003.01(3).134
- https://jds-online.org/journal/JDS/article/1151/file/pdf
- OA Status
- diamond
- Cited By
- 76
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2182658016
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2182658016Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.6339/jds.2003.01(3).134Digital Object Identifier
- Title
-
Analysis Methods for Supersaturated Design: Some ComparisonsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-07-21Full publication date if available
- Authors
-
Runze Li, Dennis K. J. LinList of authors in order
- Landing page
-
https://doi.org/10.6339/jds.2003.01(3).134Publisher landing page
- PDF URL
-
https://jds-online.org/journal/JDS/article/1151/file/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://jds-online.org/journal/JDS/article/1151/file/pdfDirect OA link when available
- Concepts
-
Selection (genetic algorithm), Feature selection, Variable (mathematics), Computer science, Bayesian probability, Design matrix, Mathematical optimization, Partial least squares regression, Least-squares function approximation, Regression analysis, Mathematics, Statistics, Machine learning, Artificial intelligence, Estimator, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
76Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 2, 2023: 5, 2022: 3, 2021: 4Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2182658016 |
|---|---|
| doi | https://doi.org/10.6339/jds.2003.01(3).134 |
| ids.doi | https://doi.org/10.6339/jds.2003.01(3).134 |
| ids.mag | 2182658016 |
| ids.openalex | https://openalex.org/W2182658016 |
| fwci | 2.44766138 |
| type | article |
| title | Analysis Methods for Supersaturated Design: Some Comparisons |
| biblio.issue | 3 |
| biblio.volume | 1 |
| biblio.last_page | 260 |
| biblio.first_page | 249 |
| topics[0].id | https://openalex.org/T11798 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Optimal Experimental Design Methods |
| topics[1].id | https://openalex.org/T10848 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9747999906539917 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Advanced Multi-Objective Optimization Algorithms |
| topics[2].id | https://openalex.org/T11443 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9595000147819519 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1804 |
| topics[2].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[2].display_name | Advanced Statistical Process Monitoring |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81917197 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6667784452438354 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[0].display_name | Selection (genetic algorithm) |
| concepts[1].id | https://openalex.org/C148483581 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6421636343002319 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[1].display_name | Feature selection |
| concepts[2].id | https://openalex.org/C182365436 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6145114898681641 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q50701 |
| concepts[2].display_name | Variable (mathematics) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5475212335586548 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C107673813 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5049832463264465 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[4].display_name | Bayesian probability |
| concepts[5].id | https://openalex.org/C203233044 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4664473235607147 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5264358 |
| concepts[5].display_name | Design matrix |
| concepts[6].id | https://openalex.org/C126255220 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4409205913543701 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[6].display_name | Mathematical optimization |
| concepts[7].id | https://openalex.org/C22354355 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4404020309448242 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q422009 |
| concepts[7].display_name | Partial least squares regression |
| concepts[8].id | https://openalex.org/C9936470 |
| concepts[8].level | 3 |
| concepts[8].score | 0.41173624992370605 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6510405 |
| concepts[8].display_name | Least-squares function approximation |
| concepts[9].id | https://openalex.org/C152877465 |
| concepts[9].level | 2 |
| concepts[9].score | 0.36147770285606384 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[9].display_name | Regression analysis |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3466028571128845 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3450621962547302 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.17083638906478882 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.14816200733184814 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C185429906 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[14].display_name | Estimator |
| concepts[15].id | https://openalex.org/C134306372 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[15].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/selection |
| keywords[0].score | 0.6667784452438354 |
| keywords[0].display_name | Selection (genetic algorithm) |
| keywords[1].id | https://openalex.org/keywords/feature-selection |
| keywords[1].score | 0.6421636343002319 |
| keywords[1].display_name | Feature selection |
| keywords[2].id | https://openalex.org/keywords/variable |
| keywords[2].score | 0.6145114898681641 |
| keywords[2].display_name | Variable (mathematics) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5475212335586548 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/bayesian-probability |
| keywords[4].score | 0.5049832463264465 |
| keywords[4].display_name | Bayesian probability |
| keywords[5].id | https://openalex.org/keywords/design-matrix |
| keywords[5].score | 0.4664473235607147 |
| keywords[5].display_name | Design matrix |
| keywords[6].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[6].score | 0.4409205913543701 |
| keywords[6].display_name | Mathematical optimization |
| keywords[7].id | https://openalex.org/keywords/partial-least-squares-regression |
| keywords[7].score | 0.4404020309448242 |
| keywords[7].display_name | Partial least squares regression |
| keywords[8].id | https://openalex.org/keywords/least-squares-function-approximation |
| keywords[8].score | 0.41173624992370605 |
| keywords[8].display_name | Least-squares function approximation |
| keywords[9].id | https://openalex.org/keywords/regression-analysis |
| keywords[9].score | 0.36147770285606384 |
| keywords[9].display_name | Regression analysis |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.3466028571128845 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.3450621962547302 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.17083638906478882 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.14816200733184814 |
| keywords[13].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.6339/jds.2003.01(3).134 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764553900 |
| locations[0].source.issn | 1680-743X, 1683-8602 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1680-743X |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Data Science |
| locations[0].source.host_organization | https://openalex.org/P4327988825 |
| locations[0].source.host_organization_name | People's University of China |
| locations[0].source.host_organization_lineage | https://openalex.org/P4327988825 |
| locations[0].source.host_organization_lineage_names | People's University of China |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://jds-online.org/journal/JDS/article/1151/file/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Data Science |
| locations[0].landing_page_url | https://doi.org/10.6339/jds.2003.01(3).134 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100721408 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0154-2202 |
| authorships[0].author.display_name | Runze Li |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I130769515 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Management Science & Information Systems The Pennsylvania State University University Park, PA 16802 |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I130769515 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Statistics The Pennsylvania State University University Park, PA 16802-2111 |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I130769515 |
| authorships[0].affiliations[2].raw_affiliation_string | The Pennsylvania State University |
| authorships[0].institutions[0].id | https://openalex.org/I130769515 |
| authorships[0].institutions[0].ror | https://ror.org/04p491231 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I130769515 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Pennsylvania State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Runze Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Management Science & Information Systems The Pennsylvania State University University Park, PA 16802, Department of Statistics The Pennsylvania State University University Park, PA 16802-2111, The Pennsylvania State University |
| authorships[1].author.id | https://openalex.org/A5057669385 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2552-7709 |
| authorships[1].author.display_name | Dennis K. J. Lin |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I130769515 |
| authorships[1].affiliations[0].raw_affiliation_string | The Pennsylvania State University |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I130769515 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Management Science & Information Systems The Pennsylvania State University University Park, PA 16802 |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I130769515 |
| authorships[1].affiliations[2].raw_affiliation_string | Department of Statistics The Pennsylvania State University University Park, PA 16802-2111 |
| authorships[1].institutions[0].id | https://openalex.org/I130769515 |
| authorships[1].institutions[0].ror | https://ror.org/04p491231 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I130769515 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Pennsylvania State University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Dennis K. J. Lin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Management Science & Information Systems The Pennsylvania State University University Park, PA 16802, Department of Statistics The Pennsylvania State University University Park, PA 16802-2111, The Pennsylvania State University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://jds-online.org/journal/JDS/article/1151/file/pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Analysis Methods for Supersaturated Design: Some Comparisons |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11798 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Optimal Experimental Design Methods |
| related_works | https://openalex.org/W1989457222, https://openalex.org/W2158863190, https://openalex.org/W2770989956, https://openalex.org/W2359803370, https://openalex.org/W4386765169, https://openalex.org/W2380916892, https://openalex.org/W2026072270, https://openalex.org/W2186619996, https://openalex.org/W4288081075, https://openalex.org/W331923736 |
| cited_by_count | 76 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 4 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 1 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 1 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 3 |
| counts_by_year[8].year | 2017 |
| counts_by_year[8].cited_by_count | 4 |
| counts_by_year[9].year | 2016 |
| counts_by_year[9].cited_by_count | 4 |
| counts_by_year[10].year | 2015 |
| counts_by_year[10].cited_by_count | 8 |
| counts_by_year[11].year | 2014 |
| counts_by_year[11].cited_by_count | 3 |
| counts_by_year[12].year | 2013 |
| counts_by_year[12].cited_by_count | 6 |
| counts_by_year[13].year | 2012 |
| counts_by_year[13].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.6339/jds.2003.01(3).134 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764553900 |
| best_oa_location.source.issn | 1680-743X, 1683-8602 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1680-743X |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Data Science |
| best_oa_location.source.host_organization | https://openalex.org/P4327988825 |
| best_oa_location.source.host_organization_name | People's University of China |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4327988825 |
| best_oa_location.source.host_organization_lineage_names | People's University of China |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://jds-online.org/journal/JDS/article/1151/file/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Data Science |
| best_oa_location.landing_page_url | https://doi.org/10.6339/jds.2003.01(3).134 |
| primary_location.id | doi:10.6339/jds.2003.01(3).134 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764553900 |
| primary_location.source.issn | 1680-743X, 1683-8602 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1680-743X |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Data Science |
| primary_location.source.host_organization | https://openalex.org/P4327988825 |
| primary_location.source.host_organization_name | People's University of China |
| primary_location.source.host_organization_lineage | https://openalex.org/P4327988825 |
| primary_location.source.host_organization_lineage_names | People's University of China |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://jds-online.org/journal/JDS/article/1151/file/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Data Science |
| primary_location.landing_page_url | https://doi.org/10.6339/jds.2003.01(3).134 |
| publication_date | 2021-07-21 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W6681236446, https://openalex.org/W2040851729, https://openalex.org/W2070094080, https://openalex.org/W2053090661, https://openalex.org/W2074682976, https://openalex.org/W4240385847, https://openalex.org/W2023039737, https://openalex.org/W2111499032, https://openalex.org/W2135046866, https://openalex.org/W100935533, https://openalex.org/W2107673074, https://openalex.org/W2038917436, https://openalex.org/W4238051564, https://openalex.org/W4245186283, https://openalex.org/W4210599395, https://openalex.org/W2168175751, https://openalex.org/W2040517404, https://openalex.org/W2289316827, https://openalex.org/W4379510236, https://openalex.org/W4232706716, https://openalex.org/W4241265777, https://openalex.org/W2022498557, https://openalex.org/W2003829489, https://openalex.org/W2078495506, https://openalex.org/W2101122849, https://openalex.org/W2008134629, https://openalex.org/W3000332379, https://openalex.org/W1972163814, https://openalex.org/W2079775628, https://openalex.org/W4239512904, https://openalex.org/W4246858143, https://openalex.org/W2007069447, https://openalex.org/W4238943743, https://openalex.org/W2142635246 |
| referenced_works_count | 34 |
| abstract_inverted_index.a | 59 |
| abstract_inverted_index.an | 27 |
| abstract_inverted_index.as | 13, 39 |
| abstract_inverted_index.be | 50 |
| abstract_inverted_index.in | 18, 22, 30, 52, 67, 103 |
| abstract_inverted_index.is | 82 |
| abstract_inverted_index.of | 10 |
| abstract_inverted_index.to | 7, 63 |
| abstract_inverted_index.we | 57 |
| abstract_inverted_index.Lin | 107 |
| abstract_inverted_index.and | 12, 45, 106 |
| abstract_inverted_index.are | 2, 15 |
| abstract_inverted_index.may | 48 |
| abstract_inverted_index.not | 49 |
| abstract_inverted_index.the | 8, 34, 40, 68, 87, 97 |
| abstract_inverted_index.via | 70 |
| abstract_inverted_index.Fong | 105 |
| abstract_inverted_index.SSDs | 69 |
| abstract_inverted_index.best | 41 |
| abstract_inverted_index.data | 32 |
| abstract_inverted_index.from | 33 |
| abstract_inverted_index.many | 19 |
| abstract_inverted_index.role | 29 |
| abstract_inverted_index.runs | 11 |
| abstract_inverted_index.such | 14, 38 |
| abstract_inverted_index.that | 86 |
| abstract_inverted_index.this | 53, 55 |
| abstract_inverted_index.very | 3, 94 |
| abstract_inverted_index.with | 5, 77, 96 |
| abstract_inverted_index.least | 73, 90 |
| abstract_inverted_index.plays | 26 |
| abstract_inverted_index.shows | 85 |
| abstract_inverted_index.active | 65 |
| abstract_inverted_index.highly | 16 |
| abstract_inverted_index.method | 92 |
| abstract_inverted_index.number | 9 |
| abstract_inverted_index.paper, | 56 |
| abstract_inverted_index.screen | 64 |
| abstract_inverted_index.subset | 42 |
| abstract_inverted_index.(2001). | 108 |
| abstract_inverted_index.designs | 1 |
| abstract_inverted_index.effects | 66 |
| abstract_inverted_index.respect | 6 |
| abstract_inverted_index.squares | 74, 91 |
| abstract_inverted_index.studies | 21 |
| abstract_inverted_index.Bayesian | 78, 98 |
| abstract_inverted_index.Beattie, | 104 |
| abstract_inverted_index.approach | 101 |
| abstract_inverted_index.compares | 93 |
| abstract_inverted_index.proposed | 102 |
| abstract_inverted_index.stepwise | 46 |
| abstract_inverted_index.variable | 43, 60, 79, 99 |
| abstract_inverted_index.analyzing | 31 |
| abstract_inverted_index.desirable | 17 |
| abstract_inverted_index.favorably | 95 |
| abstract_inverted_index.important | 28 |
| abstract_inverted_index.introduce | 58 |
| abstract_inverted_index.nonconvex | 71, 88 |
| abstract_inverted_index.penalized | 72, 89 |
| abstract_inverted_index.procedure | 62 |
| abstract_inverted_index.selection | 25, 44, 61, 80, 100 |
| abstract_inverted_index.approaches | 81 |
| abstract_inverted_index.comparison | 76 |
| abstract_inverted_index.industrial | 23 |
| abstract_inverted_index.simulation | 84 |
| abstract_inverted_index.approaches, | 37 |
| abstract_inverted_index.appropriate | 51 |
| abstract_inverted_index.preliminary | 20 |
| abstract_inverted_index.regression, | 47 |
| abstract_inverted_index.situation.In | 54 |
| abstract_inverted_index.conducted.Our | 83 |
| abstract_inverted_index.Supersaturated | 0 |
| abstract_inverted_index.cost-effective | 4 |
| abstract_inverted_index.supersaturated | 35 |
| abstract_inverted_index.approach.Empirical | 75 |
| abstract_inverted_index.designs.Traditional | 36 |
| abstract_inverted_index.experimentation.Variable | 24 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.88931434 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |