Analysis of Enterprise Marketing Performance Based on Stata Software Article Swipe
Xinxin Wang
,
Li Zhang
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.4108/eai.17-11-2023.2342733
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.4108/eai.17-11-2023.2342733
This article selects Chinese retail listed companies from 2013 to 2022 as research samples and empirically analyzes the impact of sales expenses on corporate performance using a fixed effects regression model using Stata software. Research has found that marketing expenses have a sustained impact on
Related Topics
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.4108/eai.17-11-2023.2342733
- http://eudl.eu/pdf/10.4108/eai.17-11-2023.2342733
- OA Status
- gold
- References
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392752432
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392752432Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4108/eai.17-11-2023.2342733Digital Object Identifier
- Title
-
Analysis of Enterprise Marketing Performance Based on Stata SoftwareWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Xinxin Wang, Li ZhangList of authors in order
- Landing page
-
https://doi.org/10.4108/eai.17-11-2023.2342733Publisher landing page
- PDF URL
-
https://eudl.eu/pdf/10.4108/eai.17-11-2023.2342733Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://eudl.eu/pdf/10.4108/eai.17-11-2023.2342733Direct OA link when available
- Concepts
-
Computer science, Software, Software engineering, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
3Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392752432 |
|---|---|
| doi | https://doi.org/10.4108/eai.17-11-2023.2342733 |
| ids.doi | https://doi.org/10.4108/eai.17-11-2023.2342733 |
| ids.openalex | https://openalex.org/W4392752432 |
| fwci | 0.0 |
| type | article |
| title | Analysis of Enterprise Marketing Performance Based on Stata Software |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12384 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.4555000066757202 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1406 |
| topics[0].subfield.display_name | Marketing |
| topics[0].display_name | Customer churn and segmentation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6079368591308594 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2777904410 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5101214051246643 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[1].display_name | Software |
| concepts[2].id | https://openalex.org/C115903868 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3593747019767761 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q80993 |
| concepts[2].display_name | Software engineering |
| concepts[3].id | https://openalex.org/C111919701 |
| concepts[3].level | 1 |
| concepts[3].score | 0.1433345079421997 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[3].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6079368591308594 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/software |
| keywords[1].score | 0.5101214051246643 |
| keywords[1].display_name | Software |
| keywords[2].id | https://openalex.org/keywords/software-engineering |
| keywords[2].score | 0.3593747019767761 |
| keywords[2].display_name | Software engineering |
| keywords[3].id | https://openalex.org/keywords/operating-system |
| keywords[3].score | 0.1433345079421997 |
| keywords[3].display_name | Operating system |
| language | en |
| locations[0].id | doi:10.4108/eai.17-11-2023.2342733 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | http://eudl.eu/pdf/10.4108/eai.17-11-2023.2342733 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 5th International Conference on Economic Management and Model Engineering, ICEMME 2023, November 17–19, 2023, Beijing, China |
| locations[0].landing_page_url | https://doi.org/10.4108/eai.17-11-2023.2342733 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100406826 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8238-7832 |
| authorships[0].author.display_name | Xinxin Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210154121 |
| authorships[0].affiliations[0].raw_affiliation_string | Shandong Institute of Commerce and Technology, Jinan, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210154121 |
| authorships[0].institutions[0].ror | https://ror.org/03xk2yz39 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210154121 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shandong Institute of Commerce & Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xinxin Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Shandong Institute of Commerce and Technology, Jinan, China |
| authorships[1].author.id | https://openalex.org/A5100425485 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0028-2146 |
| authorships[1].author.display_name | Li Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210154121 |
| authorships[1].affiliations[0].raw_affiliation_string | Shandong Institute of Commerce and Technology, Jinan, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210154121 |
| authorships[1].institutions[0].ror | https://ror.org/03xk2yz39 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210154121 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shandong Institute of Commerce & Technology |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Li Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Shandong Institute of Commerce and Technology, Jinan, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://eudl.eu/pdf/10.4108/eai.17-11-2023.2342733 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Analysis of Enterprise Marketing Performance Based on Stata Software |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12384 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.4555000066757202 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1406 |
| primary_topic.subfield.display_name | Marketing |
| primary_topic.display_name | Customer churn and segmentation |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4391913857, https://openalex.org/W2350741829, https://openalex.org/W2530322880 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.4108/eai.17-11-2023.2342733 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://eudl.eu/pdf/10.4108/eai.17-11-2023.2342733 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 5th International Conference on Economic Management and Model Engineering, ICEMME 2023, November 17–19, 2023, Beijing, China |
| best_oa_location.landing_page_url | https://doi.org/10.4108/eai.17-11-2023.2342733 |
| primary_location.id | doi:10.4108/eai.17-11-2023.2342733 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | http://eudl.eu/pdf/10.4108/eai.17-11-2023.2342733 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 5th International Conference on Economic Management and Model Engineering, ICEMME 2023, November 17–19, 2023, Beijing, China |
| primary_location.landing_page_url | https://doi.org/10.4108/eai.17-11-2023.2342733 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W137352981, https://openalex.org/W4210811209, https://openalex.org/W4213236892 |
| referenced_works_count | 3 |
| abstract_inverted_index.a | 26, 41 |
| abstract_inverted_index.as | 11 |
| abstract_inverted_index.of | 19 |
| abstract_inverted_index.on | 22, 44 |
| abstract_inverted_index.to | 9 |
| abstract_inverted_index.and | 14 |
| abstract_inverted_index.has | 35 |
| abstract_inverted_index.the | 17 |
| abstract_inverted_index.2013 | 8 |
| abstract_inverted_index.2022 | 10 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.from | 7 |
| abstract_inverted_index.have | 40 |
| abstract_inverted_index.that | 37 |
| abstract_inverted_index.Stata | 32 |
| abstract_inverted_index.fixed | 27 |
| abstract_inverted_index.found | 36 |
| abstract_inverted_index.model | 30 |
| abstract_inverted_index.sales | 20 |
| abstract_inverted_index.using | 25, 31 |
| abstract_inverted_index.impact | 18, 43 |
| abstract_inverted_index.listed | 5 |
| abstract_inverted_index.retail | 4 |
| abstract_inverted_index.Chinese | 3 |
| abstract_inverted_index.article | 1 |
| abstract_inverted_index.effects | 28 |
| abstract_inverted_index.samples | 13 |
| abstract_inverted_index.selects | 2 |
| abstract_inverted_index.Research | 34 |
| abstract_inverted_index.analyzes | 16 |
| abstract_inverted_index.expenses | 21, 39 |
| abstract_inverted_index.research | 12 |
| abstract_inverted_index.companies | 6 |
| abstract_inverted_index.corporate | 23 |
| abstract_inverted_index.marketing | 38 |
| abstract_inverted_index.software. | 33 |
| abstract_inverted_index.sustained | 42 |
| abstract_inverted_index.regression | 29 |
| abstract_inverted_index.empirically | 15 |
| abstract_inverted_index.performance | 24 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.04002401 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |