Analysis of Hyperspectral Data to Develop an Approach for Document Images Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/s23156845
Hyperspectral data analysis is being utilized as an effective and compelling tool for image processing, providing unprecedented levels of information and insights for various applications. In this manuscript, we have compiled and presented a comprehensive overview of recent advances in hyperspectral data analysis that can provide assistance for the development of customized techniques for hyperspectral document images. We review the fundamental concepts of hyperspectral imaging, discuss various techniques for data acquisition, and examine state-of-the-art approaches to the preprocessing, feature extraction, and classification of hyperspectral data by taking into consideration the complexities of document images. We also explore the possibility of utilizing hyperspectral imaging for addressing critical challenges in document analysis, including document forgery, ink age estimation, and text extraction from degraded or damaged documents. Finally, we discuss the current limitations of hyperspectral imaging and identify future research directions in this rapidly evolving field. Our review provides a valuable resource for researchers and practitioners working on document image processing and highlights the potential of hyperspectral imaging for addressing complex challenges in this domain.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.3390/s23156845
- https://www.mdpi.com/1424-8220/23/15/6845/pdf?version=1690885355
- OA Status
- gold
- Cited By
- 25
- References
- 111
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385446408
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385446408Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s23156845Digital Object Identifier
- Title
-
Analysis of Hyperspectral Data to Develop an Approach for Document ImagesWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-01Full publication date if available
- Authors
-
Zainab Zaman, Saad Bin Ahmed, Muhammad Imran MalikList of authors in order
- Landing page
-
https://doi.org/10.3390/s23156845Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/23/15/6845/pdf?version=1690885355Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/23/15/6845/pdf?version=1690885355Direct OA link when available
- Concepts
-
Hyperspectral imaging, Preprocessor, Computer science, Data pre-processing, Data science, Field (mathematics), Feature extraction, Image processing, Data mining, Artificial intelligence, Information retrieval, Pattern recognition (psychology), Image (mathematics), Mathematics, Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
25Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 13, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
111Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385446408 |
|---|---|
| doi | https://doi.org/10.3390/s23156845 |
| ids.doi | https://doi.org/10.3390/s23156845 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37571629 |
| ids.openalex | https://openalex.org/W4385446408 |
| fwci | 5.42770633 |
| type | review |
| title | Analysis of Hyperspectral Data to Develop an Approach for Document Images |
| biblio.issue | 15 |
| biblio.volume | 23 |
| biblio.last_page | 6845 |
| biblio.first_page | 6845 |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9980000257492065 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T11212 |
| topics[1].field.id | https://openalex.org/fields/12 |
| topics[1].field.display_name | Arts and Humanities |
| topics[1].score | 0.9976000189781189 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1204 |
| topics[1].subfield.display_name | Archeology |
| topics[1].display_name | Cultural Heritage Materials Analysis |
| topics[2].id | https://openalex.org/T14319 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9836999773979187 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Currency Recognition and Detection |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C159078339 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9734818339347839 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[0].display_name | Hyperspectral imaging |
| concepts[1].id | https://openalex.org/C34736171 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7613176107406616 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[1].display_name | Preprocessor |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7193801403045654 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C10551718 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5010020732879639 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5227332 |
| concepts[3].display_name | Data pre-processing |
| concepts[4].id | https://openalex.org/C2522767166 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4896838963031769 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[4].display_name | Data science |
| concepts[5].id | https://openalex.org/C9652623 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4640328884124756 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[5].display_name | Field (mathematics) |
| concepts[6].id | https://openalex.org/C52622490 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4209628999233246 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[6].display_name | Feature extraction |
| concepts[7].id | https://openalex.org/C9417928 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4135051369667053 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[7].display_name | Image processing |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3981267213821411 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.38621440529823303 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C23123220 |
| concepts[10].level | 1 |
| concepts[10].score | 0.35143062472343445 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[10].display_name | Information retrieval |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.33043935894966125 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2774534821510315 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.07903227210044861 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C202444582 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[14].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[0].score | 0.9734818339347839 |
| keywords[0].display_name | Hyperspectral imaging |
| keywords[1].id | https://openalex.org/keywords/preprocessor |
| keywords[1].score | 0.7613176107406616 |
| keywords[1].display_name | Preprocessor |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7193801403045654 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/data-pre-processing |
| keywords[3].score | 0.5010020732879639 |
| keywords[3].display_name | Data pre-processing |
| keywords[4].id | https://openalex.org/keywords/data-science |
| keywords[4].score | 0.4896838963031769 |
| keywords[4].display_name | Data science |
| keywords[5].id | https://openalex.org/keywords/field |
| keywords[5].score | 0.4640328884124756 |
| keywords[5].display_name | Field (mathematics) |
| keywords[6].id | https://openalex.org/keywords/feature-extraction |
| keywords[6].score | 0.4209628999233246 |
| keywords[6].display_name | Feature extraction |
| keywords[7].id | https://openalex.org/keywords/image-processing |
| keywords[7].score | 0.4135051369667053 |
| keywords[7].display_name | Image processing |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.3981267213821411 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.38621440529823303 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/information-retrieval |
| keywords[10].score | 0.35143062472343445 |
| keywords[10].display_name | Information retrieval |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.33043935894966125 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.2774534821510315 |
| keywords[12].display_name | Image (mathematics) |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.07903227210044861 |
| keywords[13].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/s23156845 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/23/15/6845/pdf?version=1690885355 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s23156845 |
| locations[1].id | pmid:37571629 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37571629 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10422312 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10422312/pdf/sensors-23-06845.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors (Basel) |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10422312 |
| locations[3].id | pmh:oai:doaj.org/article:74fac9aec55747d1aac6d7650ad72d7a |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors, Vol 23, Iss 15, p 6845 (2023) |
| locations[3].landing_page_url | https://doaj.org/article/74fac9aec55747d1aac6d7650ad72d7a |
| locations[4].id | pmh:oai:mdpi.com:/1424-8220/23/15/6845/ |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400947 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | MDPI (MDPI AG) |
| locations[4].source.host_organization | https://openalex.org/I4210097602 |
| locations[4].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors; Volume 23; Issue 15; Pages: 6845 |
| locations[4].landing_page_url | https://dx.doi.org/10.3390/s23156845 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5068614901 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-1230-903X |
| authorships[0].author.display_name | Zainab Zaman |
| authorships[0].countries | PK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I929597975 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; |
| authorships[0].institutions[0].id | https://openalex.org/I929597975 |
| authorships[0].institutions[0].ror | https://ror.org/03w2j5y17 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I929597975 |
| authorships[0].institutions[0].country_code | PK |
| authorships[0].institutions[0].display_name | National University of Sciences and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zainab Zaman |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; |
| authorships[1].author.id | https://openalex.org/A5058861950 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0631-9368 |
| authorships[1].author.display_name | Saad Bin Ahmed |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I72541430 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, Faculty of Science and Environmental Studies, Lakehead University, Thunder Bay, ON P7B 5E1, Canada |
| authorships[1].institutions[0].id | https://openalex.org/I72541430 |
| authorships[1].institutions[0].ror | https://ror.org/023p7mg82 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I72541430 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | Lakehead University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Saad Bin Ahmed |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, Faculty of Science and Environmental Studies, Lakehead University, Thunder Bay, ON P7B 5E1, Canada |
| authorships[2].author.id | https://openalex.org/A5103159827 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8079-5119 |
| authorships[2].author.display_name | Muhammad Imran Malik |
| authorships[2].countries | PK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I929597975 |
| authorships[2].affiliations[0].raw_affiliation_string | National Center of Artificial Intelligence, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I929597975 |
| authorships[2].affiliations[1].raw_affiliation_string | School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; |
| authorships[2].institutions[0].id | https://openalex.org/I929597975 |
| authorships[2].institutions[0].ror | https://ror.org/03w2j5y17 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I929597975 |
| authorships[2].institutions[0].country_code | PK |
| authorships[2].institutions[0].display_name | National University of Sciences and Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Muhammad Imran Malik |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Center of Artificial Intelligence, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan, School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/23/15/6845/pdf?version=1690885355 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Analysis of Hyperspectral Data to Develop an Approach for Document Images |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9980000257492065 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2989490741, https://openalex.org/W138569904, https://openalex.org/W2367545121, https://openalex.org/W4248881655, https://openalex.org/W2482165163, https://openalex.org/W3010890513, https://openalex.org/W3092506759, https://openalex.org/W2390914021, https://openalex.org/W2389417819, https://openalex.org/W3195278891 |
| cited_by_count | 25 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 13 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s23156845 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/23/15/6845/pdf?version=1690885355 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s23156845 |
| primary_location.id | doi:10.3390/s23156845 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/23/15/6845/pdf?version=1690885355 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s23156845 |
| publication_date | 2023-08-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2909214391, https://openalex.org/W2098136451, https://openalex.org/W3131451942, https://openalex.org/W6738674914, https://openalex.org/W1997841652, https://openalex.org/W2541546981, https://openalex.org/W1977791453, https://openalex.org/W4283315452, https://openalex.org/W2575560593, https://openalex.org/W2031253668, https://openalex.org/W2890455271, https://openalex.org/W3075397214, https://openalex.org/W3164816634, https://openalex.org/W2573524522, https://openalex.org/W2966739747, https://openalex.org/W1977415177, https://openalex.org/W6679407224, https://openalex.org/W2514046700, https://openalex.org/W4233760599, https://openalex.org/W2169210068, https://openalex.org/W2493273699, https://openalex.org/W6807886352, https://openalex.org/W2735302892, https://openalex.org/W2304496602, https://openalex.org/W2734846385, https://openalex.org/W2058144644, https://openalex.org/W2166922611, https://openalex.org/W2154970996, https://openalex.org/W1603120003, https://openalex.org/W3112209948, https://openalex.org/W3152468234, https://openalex.org/W2296342938, https://openalex.org/W6680833322, https://openalex.org/W4310973205, https://openalex.org/W2395448127, https://openalex.org/W2001496821, https://openalex.org/W3016529590, https://openalex.org/W3004674113, https://openalex.org/W3008897592, https://openalex.org/W2086950197, https://openalex.org/W2127814617, https://openalex.org/W4308275658, https://openalex.org/W2908117093, https://openalex.org/W2132638760, https://openalex.org/W2002524317, https://openalex.org/W2086074588, https://openalex.org/W4225286361, https://openalex.org/W2170395949, https://openalex.org/W2059357175, https://openalex.org/W2163547919, https://openalex.org/W2157321686, https://openalex.org/W2114486983, https://openalex.org/W1536019064, https://openalex.org/W2127062304, https://openalex.org/W2111822769, https://openalex.org/W2098424973, https://openalex.org/W2012946078, https://openalex.org/W2082464775, https://openalex.org/W2803552875, https://openalex.org/W2614256707, https://openalex.org/W2942454403, https://openalex.org/W2114360444, https://openalex.org/W2991616716, https://openalex.org/W2039417226, https://openalex.org/W2944248482, https://openalex.org/W2128728535, https://openalex.org/W2149224850, https://openalex.org/W2912961521, https://openalex.org/W6763710644, https://openalex.org/W2900511962, https://openalex.org/W3022086662, https://openalex.org/W2765811365, https://openalex.org/W2027668293, https://openalex.org/W2066916495, https://openalex.org/W2770967191, https://openalex.org/W2546942002, https://openalex.org/W2606929568, https://openalex.org/W2897452159, https://openalex.org/W2908968031, https://openalex.org/W2895861207, https://openalex.org/W2914736033, https://openalex.org/W2963755276, https://openalex.org/W2943270518, https://openalex.org/W2935130647, https://openalex.org/W4210541032, https://openalex.org/W3105255022, https://openalex.org/W2956367483, https://openalex.org/W2588023376, https://openalex.org/W3011069978, https://openalex.org/W3199906710, https://openalex.org/W2944413439, https://openalex.org/W2791006446, https://openalex.org/W4285819034, https://openalex.org/W3037458146, https://openalex.org/W2811355488, https://openalex.org/W2609880332, https://openalex.org/W4240485910, https://openalex.org/W2790473231, https://openalex.org/W3004877455, https://openalex.org/W6685027383, https://openalex.org/W2047856763, https://openalex.org/W6797719664, https://openalex.org/W2099703033, https://openalex.org/W3103753223, https://openalex.org/W2618088935, https://openalex.org/W2502978388, https://openalex.org/W4210824752, https://openalex.org/W4226070402, https://openalex.org/W2166910890, https://openalex.org/W3177200386, https://openalex.org/W2140876153 |
| referenced_works_count | 111 |
| abstract_inverted_index.a | 33, 146 |
| abstract_inverted_index.In | 25 |
| abstract_inverted_index.We | 57, 94 |
| abstract_inverted_index.an | 7 |
| abstract_inverted_index.as | 6 |
| abstract_inverted_index.by | 85 |
| abstract_inverted_index.in | 39, 107, 138, 169 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 18, 36, 50, 62, 82, 91, 99, 130, 162 |
| abstract_inverted_index.on | 154 |
| abstract_inverted_index.or | 121 |
| abstract_inverted_index.to | 75 |
| abstract_inverted_index.we | 28, 125 |
| abstract_inverted_index.Our | 143 |
| abstract_inverted_index.age | 114 |
| abstract_inverted_index.and | 9, 20, 31, 71, 80, 116, 133, 151, 158 |
| abstract_inverted_index.can | 44 |
| abstract_inverted_index.for | 12, 22, 47, 53, 68, 103, 149, 165 |
| abstract_inverted_index.ink | 113 |
| abstract_inverted_index.the | 48, 59, 76, 89, 97, 127, 160 |
| abstract_inverted_index.also | 95 |
| abstract_inverted_index.data | 1, 41, 69, 84 |
| abstract_inverted_index.from | 119 |
| abstract_inverted_index.have | 29 |
| abstract_inverted_index.into | 87 |
| abstract_inverted_index.text | 117 |
| abstract_inverted_index.that | 43 |
| abstract_inverted_index.this | 26, 139, 170 |
| abstract_inverted_index.tool | 11 |
| abstract_inverted_index.being | 4 |
| abstract_inverted_index.image | 13, 156 |
| abstract_inverted_index.field. | 142 |
| abstract_inverted_index.future | 135 |
| abstract_inverted_index.levels | 17 |
| abstract_inverted_index.recent | 37 |
| abstract_inverted_index.review | 58, 144 |
| abstract_inverted_index.taking | 86 |
| abstract_inverted_index.complex | 167 |
| abstract_inverted_index.current | 128 |
| abstract_inverted_index.damaged | 122 |
| abstract_inverted_index.discuss | 65, 126 |
| abstract_inverted_index.domain. | 171 |
| abstract_inverted_index.examine | 72 |
| abstract_inverted_index.explore | 96 |
| abstract_inverted_index.feature | 78 |
| abstract_inverted_index.images. | 56, 93 |
| abstract_inverted_index.imaging | 102, 132, 164 |
| abstract_inverted_index.provide | 45 |
| abstract_inverted_index.rapidly | 140 |
| abstract_inverted_index.various | 23, 66 |
| abstract_inverted_index.working | 153 |
| abstract_inverted_index.Finally, | 124 |
| abstract_inverted_index.advances | 38 |
| abstract_inverted_index.analysis | 2, 42 |
| abstract_inverted_index.compiled | 30 |
| abstract_inverted_index.concepts | 61 |
| abstract_inverted_index.critical | 105 |
| abstract_inverted_index.degraded | 120 |
| abstract_inverted_index.document | 55, 92, 108, 111, 155 |
| abstract_inverted_index.evolving | 141 |
| abstract_inverted_index.forgery, | 112 |
| abstract_inverted_index.identify | 134 |
| abstract_inverted_index.imaging, | 64 |
| abstract_inverted_index.insights | 21 |
| abstract_inverted_index.overview | 35 |
| abstract_inverted_index.provides | 145 |
| abstract_inverted_index.research | 136 |
| abstract_inverted_index.resource | 148 |
| abstract_inverted_index.utilized | 5 |
| abstract_inverted_index.valuable | 147 |
| abstract_inverted_index.analysis, | 109 |
| abstract_inverted_index.effective | 8 |
| abstract_inverted_index.including | 110 |
| abstract_inverted_index.potential | 161 |
| abstract_inverted_index.presented | 32 |
| abstract_inverted_index.providing | 15 |
| abstract_inverted_index.utilizing | 100 |
| abstract_inverted_index.addressing | 104, 166 |
| abstract_inverted_index.approaches | 74 |
| abstract_inverted_index.assistance | 46 |
| abstract_inverted_index.challenges | 106, 168 |
| abstract_inverted_index.compelling | 10 |
| abstract_inverted_index.customized | 51 |
| abstract_inverted_index.directions | 137 |
| abstract_inverted_index.documents. | 123 |
| abstract_inverted_index.extraction | 118 |
| abstract_inverted_index.highlights | 159 |
| abstract_inverted_index.processing | 157 |
| abstract_inverted_index.techniques | 52, 67 |
| abstract_inverted_index.development | 49 |
| abstract_inverted_index.estimation, | 115 |
| abstract_inverted_index.extraction, | 79 |
| abstract_inverted_index.fundamental | 60 |
| abstract_inverted_index.information | 19 |
| abstract_inverted_index.limitations | 129 |
| abstract_inverted_index.manuscript, | 27 |
| abstract_inverted_index.possibility | 98 |
| abstract_inverted_index.processing, | 14 |
| abstract_inverted_index.researchers | 150 |
| abstract_inverted_index.acquisition, | 70 |
| abstract_inverted_index.complexities | 90 |
| abstract_inverted_index.Hyperspectral | 0 |
| abstract_inverted_index.applications. | 24 |
| abstract_inverted_index.comprehensive | 34 |
| abstract_inverted_index.consideration | 88 |
| abstract_inverted_index.hyperspectral | 40, 54, 63, 83, 101, 131, 163 |
| abstract_inverted_index.practitioners | 152 |
| abstract_inverted_index.unprecedented | 16 |
| abstract_inverted_index.classification | 81 |
| abstract_inverted_index.preprocessing, | 77 |
| abstract_inverted_index.state-of-the-art | 73 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.95403959 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |