Analysis of sparse animal social networks Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1101/2024.10.31.621436
Low-density social networks can be common in animal societies, even among species generally considered to be highly social. Social network analysis is commonly used to analyse animal societal structure, but edge weight (strength of association between two individuals) estimation methods designed for dense networks can produce biased measures when applied to low-density networks. Frequentist methods suffer when data availability is low, because they contain an inherent flat prior that will accept any possible edge weight value, and contain no uncertainty in their output. Bayesian methods can accept alternative priors, so can provide more reliable edge weights that include a measure of uncertainty, but they can only reduce bias when sensible prior values are selected. Currently, neither accounts for zero-inflation, so they produce edge weight estimates biased towards stronger associations than the true social network, which can be seen through diagnostic plots of data quality against output estimate. We address this by adding zero-inflation to the model, and demonstrate the process using group-based data from a population of male African savannah elephants. We show that the Bayesian approach performs better than the frequentist to reduce the bias caused by these problems, though the Bayesian requires careful consideration of the priors. We recommend the use of a Bayesian framework, but with a conditional prior that allows the modelling of zero-inflation. This reflects the fact that edge weight derivation is a two-step process: i) probability of ever interacting, and ii) frequency of interaction for those who do. Additional conditional priors could be added where the biology requires it, for example in a society with strong community structure, such as female elephants in which kin structure would create additional levels of social clustering. Although this approach was inspired by reducing bias observed in sparse networks, it could have value for networks of all densities.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2024.10.31.621436
- https://www.biorxiv.org/content/biorxiv/early/2024/11/01/2024.10.31.621436.full.pdf
- OA Status
- green
- References
- 67
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404008393
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404008393Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2024.10.31.621436Digital Object Identifier
- Title
-
Analysis of sparse animal social networksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-01Full publication date if available
- Authors
-
Helen K. Mylne, Jackie Abell, Colin M. Beale, Lauren J. N. Brent, Jakob Bro‐Jørgensen, Kristen Evans, Jordan D. A. Hart, Dabwiso Sakala, Twakundine Simpamba, David Youldon, Daniel W. FranksList of authors in order
- Landing page
-
https://doi.org/10.1101/2024.10.31.621436Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2024/11/01/2024.10.31.621436.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2024/11/01/2024.10.31.621436.full.pdfDirect OA link when available
- Concepts
-
Social network analysis, Computer science, Data science, World Wide Web, Social mediaTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
67Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404008393 |
|---|---|
| doi | https://doi.org/10.1101/2024.10.31.621436 |
| ids.doi | https://doi.org/10.1101/2024.10.31.621436 |
| ids.openalex | https://openalex.org/W4404008393 |
| fwci | 0.0 |
| type | preprint |
| title | Analysis of sparse animal social networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10064 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9358000159263611 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Complex Network Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C114713312 |
| concepts[0].level | 3 |
| concepts[0].score | 0.4699086546897888 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7551269 |
| concepts[0].display_name | Social network analysis |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4067048132419586 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2522767166 |
| concepts[2].level | 1 |
| concepts[2].score | 0.36262840032577515 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[2].display_name | Data science |
| concepts[3].id | https://openalex.org/C136764020 |
| concepts[3].level | 1 |
| concepts[3].score | 0.12123358249664307 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[3].display_name | World Wide Web |
| concepts[4].id | https://openalex.org/C518677369 |
| concepts[4].level | 2 |
| concepts[4].score | 0.0948273241519928 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q202833 |
| concepts[4].display_name | Social media |
| keywords[0].id | https://openalex.org/keywords/social-network-analysis |
| keywords[0].score | 0.4699086546897888 |
| keywords[0].display_name | Social network analysis |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4067048132419586 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/data-science |
| keywords[2].score | 0.36262840032577515 |
| keywords[2].display_name | Data science |
| keywords[3].id | https://openalex.org/keywords/world-wide-web |
| keywords[3].score | 0.12123358249664307 |
| keywords[3].display_name | World Wide Web |
| keywords[4].id | https://openalex.org/keywords/social-media |
| keywords[4].score | 0.0948273241519928 |
| keywords[4].display_name | Social media |
| language | en |
| locations[0].id | doi:10.1101/2024.10.31.621436 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2024/11/01/2024.10.31.621436.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2024.10.31.621436 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5026178743 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7515-2955 |
| authorships[0].author.display_name | Helen K. Mylne |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I52099693 |
| authorships[0].affiliations[0].raw_affiliation_string | University of York |
| authorships[0].institutions[0].id | https://openalex.org/I52099693 |
| authorships[0].institutions[0].ror | https://ror.org/04m01e293 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I52099693 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of York |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Helen K Mylne |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | University of York |
| authorships[1].author.id | https://openalex.org/A5004248163 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8891-7881 |
| authorships[1].author.display_name | Jackie Abell |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I73417466 |
| authorships[1].affiliations[0].raw_affiliation_string | Coventry University |
| authorships[1].institutions[0].id | https://openalex.org/I73417466 |
| authorships[1].institutions[0].ror | https://ror.org/01tgmhj36 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I73417466 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Coventry University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jackie Abell |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Coventry University |
| authorships[2].author.id | https://openalex.org/A5086723490 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2960-5666 |
| authorships[2].author.display_name | Colin M. Beale |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I52099693 |
| authorships[2].affiliations[0].raw_affiliation_string | University of York |
| authorships[2].institutions[0].id | https://openalex.org/I52099693 |
| authorships[2].institutions[0].ror | https://ror.org/04m01e293 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I52099693 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of York |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Colin M Beale |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of York |
| authorships[3].author.id | https://openalex.org/A5005475843 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1202-1939 |
| authorships[3].author.display_name | Lauren J. N. Brent |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I23923803 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Exeter |
| authorships[3].institutions[0].id | https://openalex.org/I23923803 |
| authorships[3].institutions[0].ror | https://ror.org/03yghzc09 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I23923803 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University of Exeter |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lauren JN Brent |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Exeter |
| authorships[4].author.id | https://openalex.org/A5042709431 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2899-8477 |
| authorships[4].author.display_name | Jakob Bro‐Jørgensen |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I146655781 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Liverpool |
| authorships[4].institutions[0].id | https://openalex.org/I146655781 |
| authorships[4].institutions[0].ror | https://ror.org/04xs57h96 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I146655781 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | University of Liverpool |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jakob Bro-Jørgensen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Liverpool |
| authorships[5].author.id | https://openalex.org/A5030532027 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2759-4238 |
| authorships[5].author.display_name | Kristen Evans |
| authorships[5].countries | SE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I881427289 |
| authorships[5].affiliations[0].raw_affiliation_string | University of Gothenburg: Goteborgs Universitet |
| authorships[5].institutions[0].id | https://openalex.org/I881427289 |
| authorships[5].institutions[0].ror | https://ror.org/01tm6cn81 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I881427289 |
| authorships[5].institutions[0].country_code | SE |
| authorships[5].institutions[0].display_name | University of Gothenburg |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Kate E Evans |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | University of Gothenburg: Goteborgs Universitet |
| authorships[6].author.id | https://openalex.org/A5010254131 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4636-0760 |
| authorships[6].author.display_name | Jordan D. A. Hart |
| authorships[6].countries | GB |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I23923803 |
| authorships[6].affiliations[0].raw_affiliation_string | University of Exeter |
| authorships[6].institutions[0].id | https://openalex.org/I23923803 |
| authorships[6].institutions[0].ror | https://ror.org/03yghzc09 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I23923803 |
| authorships[6].institutions[0].country_code | GB |
| authorships[6].institutions[0].display_name | University of Exeter |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jordan DA Hart |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | University of Exeter |
| authorships[7].author.id | https://openalex.org/A5024806200 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-9562-6086 |
| authorships[7].author.display_name | Dabwiso Sakala |
| authorships[7].countries | CH |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I202697423 |
| authorships[7].affiliations[0].raw_affiliation_string | University of Zurich: Universitat Zurich |
| authorships[7].institutions[0].id | https://openalex.org/I202697423 |
| authorships[7].institutions[0].ror | https://ror.org/02crff812 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I202697423 |
| authorships[7].institutions[0].country_code | CH |
| authorships[7].institutions[0].display_name | University of Zurich |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Dabwiso Sakala |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | University of Zurich: Universitat Zurich |
| authorships[8].author.id | https://openalex.org/A5114499984 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Twakundine Simpamba |
| authorships[8].countries | ZM |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210143825 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of National Parks and Wildlife Service: Zambia Wildlife Authority |
| authorships[8].institutions[0].id | https://openalex.org/I4210143825 |
| authorships[8].institutions[0].ror | https://ror.org/03y0ep822 |
| authorships[8].institutions[0].type | government |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210105654, https://openalex.org/I4210139943, https://openalex.org/I4210143825 |
| authorships[8].institutions[0].country_code | ZM |
| authorships[8].institutions[0].display_name | World Health Organization - Zambia |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Twakundine Simpamba |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of National Parks and Wildlife Service: Zambia Wildlife Authority |
| authorships[9].author.id | https://openalex.org/A5090467685 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | David Youldon |
| authorships[9].affiliations[0].raw_affiliation_string | African Lion and Environmental Research Trust |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | David Youldon |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | African Lion and Environmental Research Trust |
| authorships[10].author.id | https://openalex.org/A5072587310 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-4832-7470 |
| authorships[10].author.display_name | Daniel W. Franks |
| authorships[10].countries | GB |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I52099693 |
| authorships[10].affiliations[0].raw_affiliation_string | University of York |
| authorships[10].institutions[0].id | https://openalex.org/I52099693 |
| authorships[10].institutions[0].ror | https://ror.org/04m01e293 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I52099693 |
| authorships[10].institutions[0].country_code | GB |
| authorships[10].institutions[0].display_name | University of York |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Daniel W Franks |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | University of York |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2024/11/01/2024.10.31.621436.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Analysis of sparse animal social networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10064 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9358000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Complex Network Analysis Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W4320063274, https://openalex.org/W3151710375 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2024.10.31.621436 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2024/11/01/2024.10.31.621436.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2024.10.31.621436 |
| primary_location.id | doi:10.1101/2024.10.31.621436 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2024/11/01/2024.10.31.621436.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2024.10.31.621436 |
| publication_date | 2024-11-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3125274062, https://openalex.org/W2118364407, https://openalex.org/W2036614090, https://openalex.org/W2026552514, https://openalex.org/W319304870, https://openalex.org/W2073867301, https://openalex.org/W2580382084, https://openalex.org/W2091850858, https://openalex.org/W2060800920, https://openalex.org/W4387636969, https://openalex.org/W2887682522, https://openalex.org/W2107938017, https://openalex.org/W4221033837, https://openalex.org/W4308113799, https://openalex.org/W2060755135, https://openalex.org/W2008318970, https://openalex.org/W2089189011, https://openalex.org/W1968743782, https://openalex.org/W2998557032, https://openalex.org/W2947040767, https://openalex.org/W2321469232, https://openalex.org/W4389443362, https://openalex.org/W2122481830, https://openalex.org/W2069736983, https://openalex.org/W2133281811, https://openalex.org/W1912405050, https://openalex.org/W3045907295, https://openalex.org/W2976196215, https://openalex.org/W2074351368, https://openalex.org/W2042327942, https://openalex.org/W2612470377, https://openalex.org/W4317662078, https://openalex.org/W4382068077, https://openalex.org/W4296125407, https://openalex.org/W4388851002, https://openalex.org/W4392751236, https://openalex.org/W4392761552, https://openalex.org/W4384829075, https://openalex.org/W4384698121, https://openalex.org/W2082767830, https://openalex.org/W2116565636, https://openalex.org/W2022885337, https://openalex.org/W2094234423, https://openalex.org/W2530639586, https://openalex.org/W4294662052, https://openalex.org/W2320499949, https://openalex.org/W2780461718, https://openalex.org/W2900022021, https://openalex.org/W4308726599, https://openalex.org/W4280574787, https://openalex.org/W4323293860, https://openalex.org/W2935337934, https://openalex.org/W2049623348, https://openalex.org/W2889856021, https://openalex.org/W3021769978, https://openalex.org/W3092298496, https://openalex.org/W4307592573, https://openalex.org/W2131492273, https://openalex.org/W2397013632, https://openalex.org/W2100358124, https://openalex.org/W2898140261, https://openalex.org/W4312117742, https://openalex.org/W4324374522, https://openalex.org/W4367048090, https://openalex.org/W2942840404, https://openalex.org/W2582705052, https://openalex.org/W2103227323 |
| referenced_works_count | 67 |
| abstract_inverted_index.a | 99, 165, 205, 210, 228, 259 |
| abstract_inverted_index.We | 148, 172, 200 |
| abstract_inverted_index.an | 65 |
| abstract_inverted_index.as | 266 |
| abstract_inverted_index.be | 5, 16, 137, 249 |
| abstract_inverted_index.by | 151, 188, 285 |
| abstract_inverted_index.i) | 231 |
| abstract_inverted_index.in | 7, 81, 258, 269, 289 |
| abstract_inverted_index.is | 22, 60, 227 |
| abstract_inverted_index.it | 292 |
| abstract_inverted_index.no | 79 |
| abstract_inverted_index.of | 34, 101, 142, 167, 197, 204, 217, 233, 239, 277, 298 |
| abstract_inverted_index.so | 90, 120 |
| abstract_inverted_index.to | 15, 25, 51, 154, 183 |
| abstract_inverted_index.all | 299 |
| abstract_inverted_index.and | 77, 157, 236 |
| abstract_inverted_index.any | 72 |
| abstract_inverted_index.are | 113 |
| abstract_inverted_index.but | 30, 103, 208 |
| abstract_inverted_index.can | 4, 45, 86, 91, 105, 136 |
| abstract_inverted_index.do. | 244 |
| abstract_inverted_index.for | 42, 118, 241, 256, 296 |
| abstract_inverted_index.ii) | 237 |
| abstract_inverted_index.it, | 255 |
| abstract_inverted_index.kin | 271 |
| abstract_inverted_index.the | 131, 155, 159, 175, 181, 185, 192, 198, 202, 215, 221, 252 |
| abstract_inverted_index.two | 37 |
| abstract_inverted_index.use | 203 |
| abstract_inverted_index.was | 283 |
| abstract_inverted_index.who | 243 |
| abstract_inverted_index.This | 219 |
| abstract_inverted_index.bias | 108, 186, 287 |
| abstract_inverted_index.data | 58, 143, 163 |
| abstract_inverted_index.edge | 31, 74, 95, 123, 224 |
| abstract_inverted_index.even | 10 |
| abstract_inverted_index.ever | 234 |
| abstract_inverted_index.fact | 222 |
| abstract_inverted_index.flat | 67 |
| abstract_inverted_index.from | 164 |
| abstract_inverted_index.have | 294 |
| abstract_inverted_index.low, | 61 |
| abstract_inverted_index.male | 168 |
| abstract_inverted_index.more | 93 |
| abstract_inverted_index.only | 106 |
| abstract_inverted_index.seen | 138 |
| abstract_inverted_index.show | 173 |
| abstract_inverted_index.such | 265 |
| abstract_inverted_index.than | 130, 180 |
| abstract_inverted_index.that | 69, 97, 174, 213, 223 |
| abstract_inverted_index.they | 63, 104, 121 |
| abstract_inverted_index.this | 150, 281 |
| abstract_inverted_index.true | 132 |
| abstract_inverted_index.used | 24 |
| abstract_inverted_index.when | 49, 57, 109 |
| abstract_inverted_index.will | 70 |
| abstract_inverted_index.with | 209, 261 |
| abstract_inverted_index.added | 250 |
| abstract_inverted_index.among | 11 |
| abstract_inverted_index.could | 248, 293 |
| abstract_inverted_index.dense | 43 |
| abstract_inverted_index.plots | 141 |
| abstract_inverted_index.prior | 68, 111, 212 |
| abstract_inverted_index.their | 82 |
| abstract_inverted_index.these | 189 |
| abstract_inverted_index.those | 242 |
| abstract_inverted_index.using | 161 |
| abstract_inverted_index.value | 295 |
| abstract_inverted_index.where | 251 |
| abstract_inverted_index.which | 135, 270 |
| abstract_inverted_index.would | 273 |
| abstract_inverted_index.Social | 19 |
| abstract_inverted_index.accept | 71, 87 |
| abstract_inverted_index.adding | 152 |
| abstract_inverted_index.allows | 214 |
| abstract_inverted_index.animal | 8, 27 |
| abstract_inverted_index.better | 179 |
| abstract_inverted_index.biased | 47, 126 |
| abstract_inverted_index.caused | 187 |
| abstract_inverted_index.common | 6 |
| abstract_inverted_index.create | 274 |
| abstract_inverted_index.female | 267 |
| abstract_inverted_index.highly | 17 |
| abstract_inverted_index.levels | 276 |
| abstract_inverted_index.model, | 156 |
| abstract_inverted_index.output | 146 |
| abstract_inverted_index.priors | 247 |
| abstract_inverted_index.reduce | 107, 184 |
| abstract_inverted_index.social | 2, 133, 278 |
| abstract_inverted_index.sparse | 290 |
| abstract_inverted_index.strong | 262 |
| abstract_inverted_index.suffer | 56 |
| abstract_inverted_index.though | 191 |
| abstract_inverted_index.value, | 76 |
| abstract_inverted_index.values | 112 |
| abstract_inverted_index.weight | 32, 75, 124, 225 |
| abstract_inverted_index.African | 169 |
| abstract_inverted_index.address | 149 |
| abstract_inverted_index.against | 145 |
| abstract_inverted_index.analyse | 26 |
| abstract_inverted_index.applied | 50 |
| abstract_inverted_index.because | 62 |
| abstract_inverted_index.between | 36 |
| abstract_inverted_index.biology | 253 |
| abstract_inverted_index.careful | 195 |
| abstract_inverted_index.contain | 64, 78 |
| abstract_inverted_index.example | 257 |
| abstract_inverted_index.include | 98 |
| abstract_inverted_index.measure | 100 |
| abstract_inverted_index.methods | 40, 55, 85 |
| abstract_inverted_index.neither | 116 |
| abstract_inverted_index.network | 20 |
| abstract_inverted_index.output. | 83 |
| abstract_inverted_index.priors, | 89 |
| abstract_inverted_index.priors. | 199 |
| abstract_inverted_index.process | 160 |
| abstract_inverted_index.produce | 46, 122 |
| abstract_inverted_index.provide | 92 |
| abstract_inverted_index.quality | 144 |
| abstract_inverted_index.social. | 18 |
| abstract_inverted_index.society | 260 |
| abstract_inverted_index.species | 12 |
| abstract_inverted_index.through | 139 |
| abstract_inverted_index.towards | 127 |
| abstract_inverted_index.weights | 96 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Although | 280 |
| abstract_inverted_index.Bayesian | 84, 176, 193, 206 |
| abstract_inverted_index.accounts | 117 |
| abstract_inverted_index.analysis | 21 |
| abstract_inverted_index.approach | 177, 282 |
| abstract_inverted_index.commonly | 23 |
| abstract_inverted_index.designed | 41 |
| abstract_inverted_index.inherent | 66 |
| abstract_inverted_index.inspired | 284 |
| abstract_inverted_index.measures | 48 |
| abstract_inverted_index.network, | 134 |
| abstract_inverted_index.networks | 3, 44, 297 |
| abstract_inverted_index.observed | 288 |
| abstract_inverted_index.performs | 178 |
| abstract_inverted_index.possible | 73 |
| abstract_inverted_index.process: | 230 |
| abstract_inverted_index.reducing | 286 |
| abstract_inverted_index.reflects | 220 |
| abstract_inverted_index.reliable | 94 |
| abstract_inverted_index.requires | 194, 254 |
| abstract_inverted_index.savannah | 170 |
| abstract_inverted_index.sensible | 110 |
| abstract_inverted_index.societal | 28 |
| abstract_inverted_index.stronger | 128 |
| abstract_inverted_index.two-step | 229 |
| abstract_inverted_index.(strength | 33 |
| abstract_inverted_index.community | 263 |
| abstract_inverted_index.elephants | 268 |
| abstract_inverted_index.estimate. | 147 |
| abstract_inverted_index.estimates | 125 |
| abstract_inverted_index.frequency | 238 |
| abstract_inverted_index.generally | 13 |
| abstract_inverted_index.modelling | 216 |
| abstract_inverted_index.networks, | 291 |
| abstract_inverted_index.networks. | 53 |
| abstract_inverted_index.problems, | 190 |
| abstract_inverted_index.recommend | 201 |
| abstract_inverted_index.selected. | 114 |
| abstract_inverted_index.structure | 272 |
| abstract_inverted_index.Additional | 245 |
| abstract_inverted_index.Currently, | 115 |
| abstract_inverted_index.additional | 275 |
| abstract_inverted_index.considered | 14 |
| abstract_inverted_index.densities. | 300 |
| abstract_inverted_index.derivation | 226 |
| abstract_inverted_index.diagnostic | 140 |
| abstract_inverted_index.elephants. | 171 |
| abstract_inverted_index.estimation | 39 |
| abstract_inverted_index.framework, | 207 |
| abstract_inverted_index.population | 166 |
| abstract_inverted_index.societies, | 9 |
| abstract_inverted_index.structure, | 29, 264 |
| abstract_inverted_index.Frequentist | 54 |
| abstract_inverted_index.Low-density | 1 |
| abstract_inverted_index.alternative | 88 |
| abstract_inverted_index.association | 35 |
| abstract_inverted_index.clustering. | 279 |
| abstract_inverted_index.conditional | 211, 246 |
| abstract_inverted_index.demonstrate | 158 |
| abstract_inverted_index.frequentist | 182 |
| abstract_inverted_index.group-based | 162 |
| abstract_inverted_index.interaction | 240 |
| abstract_inverted_index.low-density | 52 |
| abstract_inverted_index.probability | 232 |
| abstract_inverted_index.uncertainty | 80 |
| abstract_inverted_index.associations | 129 |
| abstract_inverted_index.availability | 59 |
| abstract_inverted_index.individuals) | 38 |
| abstract_inverted_index.interacting, | 235 |
| abstract_inverted_index.uncertainty, | 102 |
| abstract_inverted_index.consideration | 196 |
| abstract_inverted_index.zero-inflation | 153 |
| abstract_inverted_index.zero-inflation, | 119 |
| abstract_inverted_index.zero-inflation. | 218 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5026178743 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 11 |
| corresponding_institution_ids | https://openalex.org/I52099693 |
| citation_normalized_percentile.value | 0.24320254 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |