ANALYSIS OF THE LOSSY IMAGE COMPRESSION ALGORITHMS Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.31649/1999-9941-2023-58-3-59-64
The article discusses and conducts an analytical review of lossy image compression algorithms. Substantiated the relevance of the research with the help of statistical data. Considered and analyzed the color subsampling method. Reviewed, described, and analyzed the color quantization method, in particular, existing studies on the application of color quantization in combination with the discrete cosine transform. Highlighted the shortcomings of the existing research and formulated the possibility of further research using an expanded sample of images. Considered and analyzed in detail the compression based on the discrete cosine transform. Singled out the search for optimal quantization matrices as a promising direction of further research on improving the efficiency of the application of discrete cosine transformation. Highlighted the adaptive allocation of larger, multiples of the standard data blocks as a promising direction of research. Considered and analyzed the image compression method based on the wavelet transform. Formulated the direction of further research on the use of wavelets other than Cohen-Dobechy-Feuvo and LeGall-Tabatabay wavelet for image compression. Considered and analyzed the method of fractal compression. Formulated directions for further research, such as limiting the search depth and applying fractal compression in combination with discrete cosine transformation. Summarized directions for further research to improve the functional characteristics of the considered algorithms. The main scientific result of the conducted research is the selection of a list of promising research topics that will allow increasing the amount of data on methods, models and means of image compression. The practical value of the research is that it contains a list of research topics that can be used by researchers as material for further research.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.31649/1999-9941-2023-58-3-59-64
- https://itce.vntu.edu.ua/index.php/itce/article/download/974/635
- OA Status
- diamond
- Cited By
- 1
- References
- 11
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391583368
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391583368Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.31649/1999-9941-2023-58-3-59-64Digital Object Identifier
- Title
-
ANALYSIS OF THE LOSSY IMAGE COMPRESSION ALGORITHMSWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-29Full publication date if available
- Authors
-
Oleksii Kavka, Volodymyr Maidaniuk, Oleksandr Romanyuk, Yevhen ZavalniukList of authors in order
- Landing page
-
https://doi.org/10.31649/1999-9941-2023-58-3-59-64Publisher landing page
- PDF URL
-
https://itce.vntu.edu.ua/index.php/itce/article/download/974/635Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://itce.vntu.edu.ua/index.php/itce/article/download/974/635Direct OA link when available
- Concepts
-
Lossy compression, Algorithm, Discrete cosine transform, Image compression, Computer science, Quantization (signal processing), Fractal transform, Data compression, Wavelet, Artificial intelligence, Image processing, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
11Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391583368 |
|---|---|
| doi | https://doi.org/10.31649/1999-9941-2023-58-3-59-64 |
| ids.doi | https://doi.org/10.31649/1999-9941-2023-58-3-59-64 |
| ids.openalex | https://openalex.org/W4391583368 |
| fwci | 0.29396586 |
| type | article |
| title | ANALYSIS OF THE LOSSY IMAGE COMPRESSION ALGORITHMS |
| biblio.issue | 3 |
| biblio.volume | 58 |
| biblio.last_page | 64 |
| biblio.first_page | 59 |
| topics[0].id | https://openalex.org/T14438 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9958999752998352 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1106 |
| topics[0].subfield.display_name | Food Science |
| topics[0].display_name | Advanced Scientific Research Methods |
| topics[1].id | https://openalex.org/T12734 |
| topics[1].field.id | https://openalex.org/fields/14 |
| topics[1].field.display_name | Business, Management and Accounting |
| topics[1].score | 0.9914000034332275 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1404 |
| topics[1].subfield.display_name | Management Information Systems |
| topics[1].display_name | Information Systems and Technology Applications |
| topics[2].id | https://openalex.org/T13983 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9828000068664551 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Cybersecurity and Information Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C165021410 |
| concepts[0].level | 2 |
| concepts[0].score | 0.744438648223877 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q55564 |
| concepts[0].display_name | Lossy compression |
| concepts[1].id | https://openalex.org/C11413529 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6320480108261108 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[1].display_name | Algorithm |
| concepts[2].id | https://openalex.org/C2221639 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6216144561767578 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2877 |
| concepts[2].display_name | Discrete cosine transform |
| concepts[3].id | https://openalex.org/C13481523 |
| concepts[3].level | 4 |
| concepts[3].score | 0.5981833934783936 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q412438 |
| concepts[3].display_name | Image compression |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5913900136947632 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C28855332 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5515664219856262 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q198099 |
| concepts[5].display_name | Quantization (signal processing) |
| concepts[6].id | https://openalex.org/C144112376 |
| concepts[6].level | 5 |
| concepts[6].score | 0.5232861638069153 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5477512 |
| concepts[6].display_name | Fractal transform |
| concepts[7].id | https://openalex.org/C78548338 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4942643642425537 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2493 |
| concepts[7].display_name | Data compression |
| concepts[8].id | https://openalex.org/C47432892 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4493619501590729 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[8].display_name | Wavelet |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.29224705696105957 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C9417928 |
| concepts[10].level | 3 |
| concepts[10].score | 0.22470608353614807 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[10].display_name | Image processing |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.2172035276889801 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/lossy-compression |
| keywords[0].score | 0.744438648223877 |
| keywords[0].display_name | Lossy compression |
| keywords[1].id | https://openalex.org/keywords/algorithm |
| keywords[1].score | 0.6320480108261108 |
| keywords[1].display_name | Algorithm |
| keywords[2].id | https://openalex.org/keywords/discrete-cosine-transform |
| keywords[2].score | 0.6216144561767578 |
| keywords[2].display_name | Discrete cosine transform |
| keywords[3].id | https://openalex.org/keywords/image-compression |
| keywords[3].score | 0.5981833934783936 |
| keywords[3].display_name | Image compression |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5913900136947632 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/quantization |
| keywords[5].score | 0.5515664219856262 |
| keywords[5].display_name | Quantization (signal processing) |
| keywords[6].id | https://openalex.org/keywords/fractal-transform |
| keywords[6].score | 0.5232861638069153 |
| keywords[6].display_name | Fractal transform |
| keywords[7].id | https://openalex.org/keywords/data-compression |
| keywords[7].score | 0.4942643642425537 |
| keywords[7].display_name | Data compression |
| keywords[8].id | https://openalex.org/keywords/wavelet |
| keywords[8].score | 0.4493619501590729 |
| keywords[8].display_name | Wavelet |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.29224705696105957 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/image-processing |
| keywords[10].score | 0.22470608353614807 |
| keywords[10].display_name | Image processing |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.2172035276889801 |
| keywords[11].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.31649/1999-9941-2023-58-3-59-64 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210176603 |
| locations[0].source.issn | 1999-9941, 2078-6387 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1999-9941 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Information Technology and Computer Engineering |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://itce.vntu.edu.ua/index.php/itce/article/download/974/635 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Information technology and computer engineering |
| locations[0].landing_page_url | https://doi.org/10.31649/1999-9941-2023-58-3-59-64 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5093874490 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Oleksii Kavka |
| authorships[0].affiliations[0].raw_affiliation_string | Вінницький національний технічний університет, Вінниця |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Oleksii Kavka |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Вінницький національний технічний університет, Вінниця |
| authorships[1].author.id | https://openalex.org/A5053425055 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2386-6603 |
| authorships[1].author.display_name | Volodymyr Maidaniuk |
| authorships[1].affiliations[0].raw_affiliation_string | Вінницький національний технічний університет, Вінниця, Україна |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Volodymyr Maidaniuk |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Вінницький національний технічний університет, Вінниця, Україна |
| authorships[2].author.id | https://openalex.org/A5024915056 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0430-3706 |
| authorships[2].author.display_name | Oleksandr Romanyuk |
| authorships[2].affiliations[0].raw_affiliation_string | Вінницький національний технічний університет, Вінниця, Україна |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Oleksandr Romanyuk |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Вінницький національний технічний університет, Вінниця, Україна |
| authorships[3].author.id | https://openalex.org/A5056530928 |
| authorships[3].author.orcid | https://orcid.org/0009-0005-1202-4653 |
| authorships[3].author.display_name | Yevhen Zavalniuk |
| authorships[3].affiliations[0].raw_affiliation_string | Вінницький національний технічний університет, Вінниця, Україна |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yevhen Zavalniuk |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Вінницький національний технічний університет, Вінниця, Україна |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://itce.vntu.edu.ua/index.php/itce/article/download/974/635 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-02-07T00:00:00 |
| display_name | ANALYSIS OF THE LOSSY IMAGE COMPRESSION ALGORITHMS |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14438 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9958999752998352 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1106 |
| primary_topic.subfield.display_name | Food Science |
| primary_topic.display_name | Advanced Scientific Research Methods |
| related_works | https://openalex.org/W2914940215, https://openalex.org/W4239869440, https://openalex.org/W2751842002, https://openalex.org/W3180760233, https://openalex.org/W2096442341, https://openalex.org/W4210455546, https://openalex.org/W2078838509, https://openalex.org/W4243608781, https://openalex.org/W2387043686, https://openalex.org/W3165542721 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.31649/1999-9941-2023-58-3-59-64 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210176603 |
| best_oa_location.source.issn | 1999-9941, 2078-6387 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1999-9941 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Information Technology and Computer Engineering |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://itce.vntu.edu.ua/index.php/itce/article/download/974/635 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Information technology and computer engineering |
| best_oa_location.landing_page_url | https://doi.org/10.31649/1999-9941-2023-58-3-59-64 |
| primary_location.id | doi:10.31649/1999-9941-2023-58-3-59-64 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210176603 |
| primary_location.source.issn | 1999-9941, 2078-6387 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1999-9941 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Information Technology and Computer Engineering |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://itce.vntu.edu.ua/index.php/itce/article/download/974/635 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Information technology and computer engineering |
| primary_location.landing_page_url | https://doi.org/10.31649/1999-9941-2023-58-3-59-64 |
| publication_date | 2023-12-29 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2139675706, https://openalex.org/W3047160107, https://openalex.org/W4220918834, https://openalex.org/W3163481040, https://openalex.org/W2130561641, https://openalex.org/W1952343562, https://openalex.org/W2171062019, https://openalex.org/W2119411698, https://openalex.org/W2985760893, https://openalex.org/W1722323699, https://openalex.org/W3000042338 |
| referenced_works_count | 11 |
| abstract_inverted_index.a | 99, 129, 221, 253 |
| abstract_inverted_index.an | 5, 72 |
| abstract_inverted_index.as | 98, 128, 180, 264 |
| abstract_inverted_index.be | 260 |
| abstract_inverted_index.by | 262 |
| abstract_inverted_index.in | 40, 50, 80, 189 |
| abstract_inverted_index.is | 217, 249 |
| abstract_inverted_index.it | 251 |
| abstract_inverted_index.of | 8, 16, 22, 47, 60, 68, 75, 102, 109, 112, 120, 123, 132, 149, 155, 171, 205, 213, 220, 223, 233, 240, 246, 255 |
| abstract_inverted_index.on | 44, 85, 105, 142, 152, 235 |
| abstract_inverted_index.to | 200 |
| abstract_inverted_index.The | 0, 209, 243 |
| abstract_inverted_index.and | 3, 26, 34, 64, 78, 135, 160, 167, 185, 238 |
| abstract_inverted_index.can | 259 |
| abstract_inverted_index.for | 94, 163, 176, 197, 266 |
| abstract_inverted_index.out | 91 |
| abstract_inverted_index.the | 14, 17, 20, 28, 36, 45, 53, 58, 61, 66, 82, 86, 92, 107, 110, 117, 124, 137, 143, 147, 153, 169, 182, 202, 206, 214, 218, 231, 247 |
| abstract_inverted_index.use | 154 |
| abstract_inverted_index.data | 126, 234 |
| abstract_inverted_index.help | 21 |
| abstract_inverted_index.list | 222, 254 |
| abstract_inverted_index.main | 210 |
| abstract_inverted_index.such | 179 |
| abstract_inverted_index.than | 158 |
| abstract_inverted_index.that | 227, 250, 258 |
| abstract_inverted_index.used | 261 |
| abstract_inverted_index.will | 228 |
| abstract_inverted_index.with | 19, 52, 191 |
| abstract_inverted_index.allow | 229 |
| abstract_inverted_index.based | 84, 141 |
| abstract_inverted_index.color | 29, 37, 48 |
| abstract_inverted_index.data. | 24 |
| abstract_inverted_index.depth | 184 |
| abstract_inverted_index.image | 10, 138, 164, 241 |
| abstract_inverted_index.lossy | 9 |
| abstract_inverted_index.means | 239 |
| abstract_inverted_index.other | 157 |
| abstract_inverted_index.using | 71 |
| abstract_inverted_index.value | 245 |
| abstract_inverted_index.amount | 232 |
| abstract_inverted_index.blocks | 127 |
| abstract_inverted_index.cosine | 55, 88, 114, 193 |
| abstract_inverted_index.detail | 81 |
| abstract_inverted_index.method | 140, 170 |
| abstract_inverted_index.models | 237 |
| abstract_inverted_index.result | 212 |
| abstract_inverted_index.review | 7 |
| abstract_inverted_index.sample | 74 |
| abstract_inverted_index.search | 93, 183 |
| abstract_inverted_index.topics | 226, 257 |
| abstract_inverted_index.Singled | 90 |
| abstract_inverted_index.article | 1 |
| abstract_inverted_index.fractal | 172, 187 |
| abstract_inverted_index.further | 69, 103, 150, 177, 198, 267 |
| abstract_inverted_index.images. | 76 |
| abstract_inverted_index.improve | 201 |
| abstract_inverted_index.larger, | 121 |
| abstract_inverted_index.method, | 39 |
| abstract_inverted_index.method. | 31 |
| abstract_inverted_index.optimal | 95 |
| abstract_inverted_index.studies | 43 |
| abstract_inverted_index.wavelet | 144, 162 |
| abstract_inverted_index.adaptive | 118 |
| abstract_inverted_index.analyzed | 27, 35, 79, 136, 168 |
| abstract_inverted_index.applying | 186 |
| abstract_inverted_index.conducts | 4 |
| abstract_inverted_index.contains | 252 |
| abstract_inverted_index.discrete | 54, 87, 113, 192 |
| abstract_inverted_index.existing | 42, 62 |
| abstract_inverted_index.expanded | 73 |
| abstract_inverted_index.limiting | 181 |
| abstract_inverted_index.material | 265 |
| abstract_inverted_index.matrices | 97 |
| abstract_inverted_index.methods, | 236 |
| abstract_inverted_index.research | 18, 63, 70, 104, 151, 199, 216, 225, 248, 256 |
| abstract_inverted_index.standard | 125 |
| abstract_inverted_index.wavelets | 156 |
| abstract_inverted_index.Reviewed, | 32 |
| abstract_inverted_index.conducted | 215 |
| abstract_inverted_index.direction | 101, 131, 148 |
| abstract_inverted_index.discusses | 2 |
| abstract_inverted_index.improving | 106 |
| abstract_inverted_index.multiples | 122 |
| abstract_inverted_index.practical | 244 |
| abstract_inverted_index.promising | 100, 130, 224 |
| abstract_inverted_index.relevance | 15 |
| abstract_inverted_index.research, | 178 |
| abstract_inverted_index.research. | 133, 268 |
| abstract_inverted_index.selection | 219 |
| abstract_inverted_index.Considered | 25, 77, 134, 166 |
| abstract_inverted_index.Formulated | 146, 174 |
| abstract_inverted_index.Summarized | 195 |
| abstract_inverted_index.allocation | 119 |
| abstract_inverted_index.analytical | 6 |
| abstract_inverted_index.considered | 207 |
| abstract_inverted_index.described, | 33 |
| abstract_inverted_index.directions | 175, 196 |
| abstract_inverted_index.efficiency | 108 |
| abstract_inverted_index.formulated | 65 |
| abstract_inverted_index.functional | 203 |
| abstract_inverted_index.increasing | 230 |
| abstract_inverted_index.scientific | 211 |
| abstract_inverted_index.transform. | 56, 89, 145 |
| abstract_inverted_index.Highlighted | 57, 116 |
| abstract_inverted_index.algorithms. | 12, 208 |
| abstract_inverted_index.application | 46, 111 |
| abstract_inverted_index.combination | 51, 190 |
| abstract_inverted_index.compression | 11, 83, 139, 188 |
| abstract_inverted_index.particular, | 41 |
| abstract_inverted_index.possibility | 67 |
| abstract_inverted_index.researchers | 263 |
| abstract_inverted_index.statistical | 23 |
| abstract_inverted_index.subsampling | 30 |
| abstract_inverted_index.compression. | 165, 173, 242 |
| abstract_inverted_index.quantization | 38, 49, 96 |
| abstract_inverted_index.shortcomings | 59 |
| abstract_inverted_index.Substantiated | 13 |
| abstract_inverted_index.characteristics | 204 |
| abstract_inverted_index.transformation. | 115, 194 |
| abstract_inverted_index.LeGall-Tabatabay | 161 |
| abstract_inverted_index.Cohen-Dobechy-Feuvo | 159 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.62222529 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |