Analytics-Driven Networking: When the Computer becomes the Network Article Swipe
As the era of 'human-managed networking' passes to 'analytics-driven networking', more and more data about networks, including the constituent flows, is being tracked and retrieved. With networks now needing to be an effective sensor, new methods are being proposed to create and manage this streaming telemetry. While collection of this telemetry is happening at an unprecedented scale, it is unclear if the data is of enough resolution to make real-time decisions needed for fine-grained control, or for the application of new machine learning/artificial intelligence techniques. New techniques are being developed to provide high-precision telemetry as new analytics to take advantage of that are being developed.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3391812.3396266
- https://dl.acm.org/doi/pdf/10.1145/3391812.3396266
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3036587492
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3036587492Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3391812.3396266Digital Object Identifier
- Title
-
Analytics-Driven Networking: When the Computer becomes the NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-06-16Full publication date if available
- Authors
-
Inder MongaList of authors in order
- Landing page
-
https://doi.org/10.1145/3391812.3396266Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3391812.3396266Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3391812.3396266Direct OA link when available
- Concepts
-
Computer science, Analytics, Telemetry, Data science, Data analysis, Big data, Scale (ratio), Data collection, Telecommunications, Data mining, Statistics, Quantum mechanics, Physics, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3036587492 |
|---|---|
| doi | https://doi.org/10.1145/3391812.3396266 |
| ids.doi | https://doi.org/10.1145/3391812.3396266 |
| ids.mag | 3036587492 |
| ids.openalex | https://openalex.org/W3036587492 |
| fwci | 0.0 |
| type | article |
| title | Analytics-Driven Networking: When the Computer becomes the Network |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 1 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T12216 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8432000279426575 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Time Synchronization Technologies |
| topics[1].id | https://openalex.org/T12127 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.8105000257492065 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Software System Performance and Reliability |
| topics[2].id | https://openalex.org/T10400 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.8026000261306763 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Network Security and Intrusion Detection |
| funders[0].id | https://openalex.org/F4320337506 |
| funders[0].ror | https://ror.org/0012c7r22 |
| funders[0].display_name | Advanced Scientific Computing Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7730985879898071 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C79158427 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7723814845085144 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q485396 |
| concepts[1].display_name | Analytics |
| concepts[2].id | https://openalex.org/C183121708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5799933671951294 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q209867 |
| concepts[2].display_name | Telemetry |
| concepts[3].id | https://openalex.org/C2522767166 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5664249062538147 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[3].display_name | Data science |
| concepts[4].id | https://openalex.org/C175801342 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4901769757270813 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1988917 |
| concepts[4].display_name | Data analysis |
| concepts[5].id | https://openalex.org/C75684735 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4190753102302551 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[5].display_name | Big data |
| concepts[6].id | https://openalex.org/C2778755073 |
| concepts[6].level | 2 |
| concepts[6].score | 0.412982314825058 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[6].display_name | Scale (ratio) |
| concepts[7].id | https://openalex.org/C133462117 |
| concepts[7].level | 2 |
| concepts[7].score | 0.411357045173645 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q4929239 |
| concepts[7].display_name | Data collection |
| concepts[8].id | https://openalex.org/C76155785 |
| concepts[8].level | 1 |
| concepts[8].score | 0.29826319217681885 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[8].display_name | Telecommunications |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.15831980109214783 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C62520636 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[11].display_name | Quantum mechanics |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7730985879898071 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/analytics |
| keywords[1].score | 0.7723814845085144 |
| keywords[1].display_name | Analytics |
| keywords[2].id | https://openalex.org/keywords/telemetry |
| keywords[2].score | 0.5799933671951294 |
| keywords[2].display_name | Telemetry |
| keywords[3].id | https://openalex.org/keywords/data-science |
| keywords[3].score | 0.5664249062538147 |
| keywords[3].display_name | Data science |
| keywords[4].id | https://openalex.org/keywords/data-analysis |
| keywords[4].score | 0.4901769757270813 |
| keywords[4].display_name | Data analysis |
| keywords[5].id | https://openalex.org/keywords/big-data |
| keywords[5].score | 0.4190753102302551 |
| keywords[5].display_name | Big data |
| keywords[6].id | https://openalex.org/keywords/scale |
| keywords[6].score | 0.412982314825058 |
| keywords[6].display_name | Scale (ratio) |
| keywords[7].id | https://openalex.org/keywords/data-collection |
| keywords[7].score | 0.411357045173645 |
| keywords[7].display_name | Data collection |
| keywords[8].id | https://openalex.org/keywords/telecommunications |
| keywords[8].score | 0.29826319217681885 |
| keywords[8].display_name | Telecommunications |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.15831980109214783 |
| keywords[9].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.1145/3391812.3396266 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3391812.3396266 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 3rd International Workshop on Systems and Network Telemetry and Analytics |
| locations[0].landing_page_url | https://doi.org/10.1145/3391812.3396266 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5073240021 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4524-0457 |
| authorships[0].author.display_name | Inder Monga |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I148283060 |
| authorships[0].affiliations[0].raw_affiliation_string | Lawrence Berkeley National Lab, Berkeley, CA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I148283060 |
| authorships[0].institutions[0].ror | https://ror.org/02jbv0t02 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I148283060, https://openalex.org/I39565521 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Lawrence Berkeley National Laboratory |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Inder Monga |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Lawrence Berkeley National Lab, Berkeley, CA, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3391812.3396266 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Analytics-Driven Networking: When the Computer becomes the Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12216 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8432000279426575 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Time Synchronization Technologies |
| related_works | https://openalex.org/W4226266853, https://openalex.org/W4210252074, https://openalex.org/W4245701730, https://openalex.org/W2511794504, https://openalex.org/W2911648135, https://openalex.org/W3092201768, https://openalex.org/W2886451445, https://openalex.org/W3108449883, https://openalex.org/W2551093110, https://openalex.org/W2796632413 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3391812.3396266 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3391812.3396266 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 3rd International Workshop on Systems and Network Telemetry and Analytics |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3391812.3396266 |
| primary_location.id | doi:10.1145/3391812.3396266 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3391812.3396266 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 3rd International Workshop on Systems and Network Telemetry and Analytics |
| primary_location.landing_page_url | https://doi.org/10.1145/3391812.3396266 |
| publication_date | 2020-06-16 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.As | 0 |
| abstract_inverted_index.an | 31, 54 |
| abstract_inverted_index.as | 94 |
| abstract_inverted_index.at | 53 |
| abstract_inverted_index.be | 30 |
| abstract_inverted_index.if | 60 |
| abstract_inverted_index.is | 20, 51, 58, 63 |
| abstract_inverted_index.it | 57 |
| abstract_inverted_index.of | 3, 48, 64, 79, 100 |
| abstract_inverted_index.or | 75 |
| abstract_inverted_index.to | 7, 29, 39, 67, 90, 97 |
| abstract_inverted_index.New | 85 |
| abstract_inverted_index.and | 11, 23, 41 |
| abstract_inverted_index.are | 36, 87, 102 |
| abstract_inverted_index.era | 2 |
| abstract_inverted_index.for | 72, 76 |
| abstract_inverted_index.new | 34, 80, 95 |
| abstract_inverted_index.now | 27 |
| abstract_inverted_index.the | 1, 17, 61, 77 |
| abstract_inverted_index.With | 25 |
| abstract_inverted_index.data | 13, 62 |
| abstract_inverted_index.make | 68 |
| abstract_inverted_index.more | 10, 12 |
| abstract_inverted_index.take | 98 |
| abstract_inverted_index.that | 101 |
| abstract_inverted_index.this | 43, 49 |
| abstract_inverted_index.While | 46 |
| abstract_inverted_index.about | 14 |
| abstract_inverted_index.being | 21, 37, 88, 103 |
| abstract_inverted_index.create | 40 |
| abstract_inverted_index.enough | 65 |
| abstract_inverted_index.flows, | 19 |
| abstract_inverted_index.manage | 42 |
| abstract_inverted_index.needed | 71 |
| abstract_inverted_index.passes | 6 |
| abstract_inverted_index.scale, | 56 |
| abstract_inverted_index.machine | 81 |
| abstract_inverted_index.methods | 35 |
| abstract_inverted_index.needing | 28 |
| abstract_inverted_index.provide | 91 |
| abstract_inverted_index.sensor, | 33 |
| abstract_inverted_index.tracked | 22 |
| abstract_inverted_index.unclear | 59 |
| abstract_inverted_index.control, | 74 |
| abstract_inverted_index.networks | 26 |
| abstract_inverted_index.proposed | 38 |
| abstract_inverted_index.advantage | 99 |
| abstract_inverted_index.analytics | 96 |
| abstract_inverted_index.decisions | 70 |
| abstract_inverted_index.developed | 89 |
| abstract_inverted_index.effective | 32 |
| abstract_inverted_index.happening | 52 |
| abstract_inverted_index.including | 16 |
| abstract_inverted_index.networks, | 15 |
| abstract_inverted_index.real-time | 69 |
| abstract_inverted_index.streaming | 44 |
| abstract_inverted_index.telemetry | 50, 93 |
| abstract_inverted_index.collection | 47 |
| abstract_inverted_index.developed. | 104 |
| abstract_inverted_index.resolution | 66 |
| abstract_inverted_index.retrieved. | 24 |
| abstract_inverted_index.techniques | 86 |
| abstract_inverted_index.telemetry. | 45 |
| abstract_inverted_index.application | 78 |
| abstract_inverted_index.constituent | 18 |
| abstract_inverted_index.networking' | 5 |
| abstract_inverted_index.techniques. | 84 |
| abstract_inverted_index.fine-grained | 73 |
| abstract_inverted_index.intelligence | 83 |
| abstract_inverted_index.networking', | 9 |
| abstract_inverted_index.unprecedented | 55 |
| abstract_inverted_index.'human-managed | 4 |
| abstract_inverted_index.high-precision | 92 |
| abstract_inverted_index.'analytics-driven | 8 |
| abstract_inverted_index.learning/artificial | 82 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5073240021 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 1 |
| corresponding_institution_ids | https://openalex.org/I148283060 |
| citation_normalized_percentile.value | 0.08635672 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |