Analyzing Cross Validation In Compressed Sensing With Mixed Gaussian And Impulse Measurement Noise With L1 Errors Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2102.10165
Compressed sensing (CS) involves sampling signals at rates less than their Nyquist rates and attempting to reconstruct them after sample acquisition. Most such algorithms have parameters, for example the regularization parameter in LASSO, which need to be chosen carefully for optimal performance. These parameters can be chosen based on assumptions on the noise level or signal sparsity, but this knowledge may often be unavailable. In such cases, cross validation (CV) can be used to choose these parameters in a purely data-driven fashion. Previous work analysing the use of CV in CS has been based on the $\ell_2$ cross-validation error with Gaussian measurement noise. But it is well known that the $\ell_2$ error is not robust to impulse noise and provides a poor estimate of the recovery error, failing to choose the best parameter. Here we propose using the $\ell_1$ CV error which provides substantial performance benefits given impulse measurement noise. Most importantly, we provide a detailed theoretical analysis and error bounds for the use of $\ell_1$ CV error in CS reconstruction. We show that with high probability, choosing the parameter that yields the minimum $\ell_1$ CV error is equivalent to choosing the minimum recovery error (which is not observable in practice). To our best knowledge, this is the first paper which theoretically analyzes $\ell_1$-based CV in CS.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2102.10165
- https://arxiv.org/pdf/2102.10165
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4287326034
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4287326034Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2102.10165Digital Object Identifier
- Title
-
Analyzing Cross Validation In Compressed Sensing With Mixed Gaussian And Impulse Measurement Noise With L1 ErrorsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-02-19Full publication date if available
- Authors
-
Chinmay Gurjarpadhye, Shubhang Bhatnagar, Ajit RajwadeList of authors in order
- Landing page
-
https://arxiv.org/abs/2102.10165Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2102.10165Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2102.10165Direct OA link when available
- Concepts
-
Compressed sensing, Impulse noise, Gaussian noise, Algorithm, Impulse (physics), Gaussian, Noise (video), Observational error, Mathematics, Computer science, Word error rate, Nyquist–Shannon sampling theorem, Statistics, Artificial intelligence, Physics, Mathematical analysis, Image (mathematics), Pixel, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4287326034 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2102.10165 |
| ids.doi | https://doi.org/10.48550/arxiv.2102.10165 |
| ids.openalex | https://openalex.org/W4287326034 |
| fwci | |
| type | preprint |
| title | Analyzing Cross Validation In Compressed Sensing With Mixed Gaussian And Impulse Measurement Noise With L1 Errors |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12015 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9945999979972839 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Photoacoustic and Ultrasonic Imaging |
| topics[1].id | https://openalex.org/T10500 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9902999997138977 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Sparse and Compressive Sensing Techniques |
| topics[2].id | https://openalex.org/T11778 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9843999743461609 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Electrical and Bioimpedance Tomography |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C124851039 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6763646602630615 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2665459 |
| concepts[0].display_name | Compressed sensing |
| concepts[1].id | https://openalex.org/C127372701 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6625779867172241 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q16979398 |
| concepts[1].display_name | Impulse noise |
| concepts[2].id | https://openalex.org/C4199805 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6411013603210449 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2725903 |
| concepts[2].display_name | Gaussian noise |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5975899696350098 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C70836080 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5590537786483765 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q837940 |
| concepts[4].display_name | Impulse (physics) |
| concepts[5].id | https://openalex.org/C163716315 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5532488226890564 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[5].display_name | Gaussian |
| concepts[6].id | https://openalex.org/C99498987 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5144805908203125 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[6].display_name | Noise (video) |
| concepts[7].id | https://openalex.org/C19619285 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48768937587738037 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q196372 |
| concepts[7].display_name | Observational error |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.47377705574035645 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.46921172738075256 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C40969351 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42788949608802795 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3516228 |
| concepts[10].display_name | Word error rate |
| concepts[11].id | https://openalex.org/C288623 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4226016700267792 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q679800 |
| concepts[11].display_name | Nyquist–Shannon sampling theorem |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.413074791431427 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.16794198751449585 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.1070810854434967 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C134306372 |
| concepts[15].level | 1 |
| concepts[15].score | 0.08724772930145264 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[15].display_name | Mathematical analysis |
| concepts[16].id | https://openalex.org/C115961682 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[16].display_name | Image (mathematics) |
| concepts[17].id | https://openalex.org/C160633673 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[17].display_name | Pixel |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/compressed-sensing |
| keywords[0].score | 0.6763646602630615 |
| keywords[0].display_name | Compressed sensing |
| keywords[1].id | https://openalex.org/keywords/impulse-noise |
| keywords[1].score | 0.6625779867172241 |
| keywords[1].display_name | Impulse noise |
| keywords[2].id | https://openalex.org/keywords/gaussian-noise |
| keywords[2].score | 0.6411013603210449 |
| keywords[2].display_name | Gaussian noise |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.5975899696350098 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/impulse |
| keywords[4].score | 0.5590537786483765 |
| keywords[4].display_name | Impulse (physics) |
| keywords[5].id | https://openalex.org/keywords/gaussian |
| keywords[5].score | 0.5532488226890564 |
| keywords[5].display_name | Gaussian |
| keywords[6].id | https://openalex.org/keywords/noise |
| keywords[6].score | 0.5144805908203125 |
| keywords[6].display_name | Noise (video) |
| keywords[7].id | https://openalex.org/keywords/observational-error |
| keywords[7].score | 0.48768937587738037 |
| keywords[7].display_name | Observational error |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.47377705574035645 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.46921172738075256 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/word-error-rate |
| keywords[10].score | 0.42788949608802795 |
| keywords[10].display_name | Word error rate |
| keywords[11].id | https://openalex.org/keywords/nyquist–shannon-sampling-theorem |
| keywords[11].score | 0.4226016700267792 |
| keywords[11].display_name | Nyquist–Shannon sampling theorem |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.413074791431427 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.16794198751449585 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/physics |
| keywords[14].score | 0.1070810854434967 |
| keywords[14].display_name | Physics |
| keywords[15].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[15].score | 0.08724772930145264 |
| keywords[15].display_name | Mathematical analysis |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2102.10165 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2102.10165 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2102.10165 |
| locations[1].id | doi:10.48550/arxiv.2102.10165 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2102.10165 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5008828078 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Chinmay Gurjarpadhye |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gurjarpadhye, Chinmay |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5017234218 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shubhang Bhatnagar |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bhatnagar, Shubhang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5072824358 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6463-3315 |
| authorships[2].author.display_name | Ajit Rajwade |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Rajwade, Ajit |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2102.10165 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-07-25T00:00:00 |
| display_name | Analyzing Cross Validation In Compressed Sensing With Mixed Gaussian And Impulse Measurement Noise With L1 Errors |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12015 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9945999979972839 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Photoacoustic and Ultrasonic Imaging |
| related_works | https://openalex.org/W2159720070, https://openalex.org/W2463830379, https://openalex.org/W1991133639, https://openalex.org/W2157134024, https://openalex.org/W2985488186, https://openalex.org/W2165264176, https://openalex.org/W2290527899, https://openalex.org/W2064270814, https://openalex.org/W2286538174, https://openalex.org/W2016732018 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2102.10165 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2102.10165 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2102.10165 |
| primary_location.id | pmh:oai:arXiv.org:2102.10165 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2102.10165 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2102.10165 |
| publication_date | 2021-02-19 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 78, 120, 154 |
| abstract_inverted_index.CS | 90, 169 |
| abstract_inverted_index.CV | 88, 139, 166, 185, 214 |
| abstract_inverted_index.In | 64 |
| abstract_inverted_index.To | 201 |
| abstract_inverted_index.We | 171 |
| abstract_inverted_index.at | 6 |
| abstract_inverted_index.be | 36, 45, 62, 71 |
| abstract_inverted_index.in | 31, 77, 89, 168, 199, 215 |
| abstract_inverted_index.is | 105, 112, 187, 196, 206 |
| abstract_inverted_index.it | 104 |
| abstract_inverted_index.of | 87, 123, 164 |
| abstract_inverted_index.on | 48, 50, 94 |
| abstract_inverted_index.or | 54 |
| abstract_inverted_index.to | 15, 35, 73, 115, 128, 189 |
| abstract_inverted_index.we | 134, 152 |
| abstract_inverted_index.But | 103 |
| abstract_inverted_index.CS. | 216 |
| abstract_inverted_index.and | 13, 118, 158 |
| abstract_inverted_index.but | 57 |
| abstract_inverted_index.can | 44, 70 |
| abstract_inverted_index.for | 26, 39, 161 |
| abstract_inverted_index.has | 91 |
| abstract_inverted_index.may | 60 |
| abstract_inverted_index.not | 113, 197 |
| abstract_inverted_index.our | 202 |
| abstract_inverted_index.the | 28, 51, 85, 95, 109, 124, 130, 137, 162, 178, 182, 191, 207 |
| abstract_inverted_index.use | 86, 163 |
| abstract_inverted_index.(CS) | 2 |
| abstract_inverted_index.(CV) | 69 |
| abstract_inverted_index.Here | 133 |
| abstract_inverted_index.Most | 21, 150 |
| abstract_inverted_index.been | 92 |
| abstract_inverted_index.best | 131, 203 |
| abstract_inverted_index.have | 24 |
| abstract_inverted_index.high | 175 |
| abstract_inverted_index.less | 8 |
| abstract_inverted_index.need | 34 |
| abstract_inverted_index.poor | 121 |
| abstract_inverted_index.show | 172 |
| abstract_inverted_index.such | 22, 65 |
| abstract_inverted_index.than | 9 |
| abstract_inverted_index.that | 108, 173, 180 |
| abstract_inverted_index.them | 17 |
| abstract_inverted_index.this | 58, 205 |
| abstract_inverted_index.used | 72 |
| abstract_inverted_index.well | 106 |
| abstract_inverted_index.with | 99, 174 |
| abstract_inverted_index.work | 83 |
| abstract_inverted_index.These | 42 |
| abstract_inverted_index.after | 18 |
| abstract_inverted_index.based | 47, 93 |
| abstract_inverted_index.cross | 67 |
| abstract_inverted_index.error | 98, 111, 140, 159, 167, 186, 194 |
| abstract_inverted_index.first | 208 |
| abstract_inverted_index.given | 146 |
| abstract_inverted_index.known | 107 |
| abstract_inverted_index.level | 53 |
| abstract_inverted_index.noise | 52, 117 |
| abstract_inverted_index.often | 61 |
| abstract_inverted_index.paper | 209 |
| abstract_inverted_index.rates | 7, 12 |
| abstract_inverted_index.their | 10 |
| abstract_inverted_index.these | 75 |
| abstract_inverted_index.using | 136 |
| abstract_inverted_index.which | 33, 141, 210 |
| abstract_inverted_index.(which | 195 |
| abstract_inverted_index.LASSO, | 32 |
| abstract_inverted_index.bounds | 160 |
| abstract_inverted_index.cases, | 66 |
| abstract_inverted_index.choose | 74, 129 |
| abstract_inverted_index.chosen | 37, 46 |
| abstract_inverted_index.error, | 126 |
| abstract_inverted_index.noise. | 102, 149 |
| abstract_inverted_index.purely | 79 |
| abstract_inverted_index.robust | 114 |
| abstract_inverted_index.sample | 19 |
| abstract_inverted_index.signal | 55 |
| abstract_inverted_index.yields | 181 |
| abstract_inverted_index.Nyquist | 11 |
| abstract_inverted_index.example | 27 |
| abstract_inverted_index.failing | 127 |
| abstract_inverted_index.impulse | 116, 147 |
| abstract_inverted_index.minimum | 183, 192 |
| abstract_inverted_index.optimal | 40 |
| abstract_inverted_index.propose | 135 |
| abstract_inverted_index.provide | 153 |
| abstract_inverted_index.sensing | 1 |
| abstract_inverted_index.signals | 5 |
| abstract_inverted_index.$\ell_1$ | 138, 165, 184 |
| abstract_inverted_index.$\ell_2$ | 96, 110 |
| abstract_inverted_index.Gaussian | 100 |
| abstract_inverted_index.Previous | 82 |
| abstract_inverted_index.analysis | 157 |
| abstract_inverted_index.analyzes | 212 |
| abstract_inverted_index.benefits | 145 |
| abstract_inverted_index.choosing | 177, 190 |
| abstract_inverted_index.detailed | 155 |
| abstract_inverted_index.estimate | 122 |
| abstract_inverted_index.fashion. | 81 |
| abstract_inverted_index.involves | 3 |
| abstract_inverted_index.provides | 119, 142 |
| abstract_inverted_index.recovery | 125, 193 |
| abstract_inverted_index.sampling | 4 |
| abstract_inverted_index.analysing | 84 |
| abstract_inverted_index.carefully | 38 |
| abstract_inverted_index.knowledge | 59 |
| abstract_inverted_index.parameter | 30, 179 |
| abstract_inverted_index.sparsity, | 56 |
| abstract_inverted_index.Compressed | 0 |
| abstract_inverted_index.algorithms | 23 |
| abstract_inverted_index.attempting | 14 |
| abstract_inverted_index.equivalent | 188 |
| abstract_inverted_index.knowledge, | 204 |
| abstract_inverted_index.observable | 198 |
| abstract_inverted_index.parameter. | 132 |
| abstract_inverted_index.parameters | 43, 76 |
| abstract_inverted_index.practice). | 200 |
| abstract_inverted_index.validation | 68 |
| abstract_inverted_index.assumptions | 49 |
| abstract_inverted_index.data-driven | 80 |
| abstract_inverted_index.measurement | 101, 148 |
| abstract_inverted_index.parameters, | 25 |
| abstract_inverted_index.performance | 144 |
| abstract_inverted_index.reconstruct | 16 |
| abstract_inverted_index.substantial | 143 |
| abstract_inverted_index.theoretical | 156 |
| abstract_inverted_index.acquisition. | 20 |
| abstract_inverted_index.importantly, | 151 |
| abstract_inverted_index.performance. | 41 |
| abstract_inverted_index.probability, | 176 |
| abstract_inverted_index.unavailable. | 63 |
| abstract_inverted_index.theoretically | 211 |
| abstract_inverted_index.$\ell_1$-based | 213 |
| abstract_inverted_index.regularization | 29 |
| abstract_inverted_index.reconstruction. | 170 |
| abstract_inverted_index.cross-validation | 97 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile |