Analyzing Healthcare Big Data With Prediction for Future Health Condition Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.1109/access.2016.2647619
In healthcare management, a large volume of multi-structured patient data is generated from the clinical reports, doctor's notes, and wearable body sensors. The analysis of healthcare parameters and the prediction of the subsequent future health conditions are still in the informative stage. A cloud-enabled big data analytic platform is the best way to analyze the structured and unstructured data generated from healthcare management systems. In this paper, a probabilistic data collection mechanism is designed and the correlation analysis of those collected data is performed. Finally, a stochastic prediction model is designed to foresee the future health condition of the most correlated patients based on their current health status. Performance evaluation of the proposed protocols is realized through extensive simulations in the cloud environment, which gives about 98% accuracy of prediction, and maintains 90% of CPU and bandwidth utilization to reduce the analysis time.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2016.2647619
- https://ieeexplore.ieee.org/ielx7/6287639/7419931/07805199.pdf
- OA Status
- gold
- Cited By
- 154
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2571067114
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2571067114Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2016.2647619Digital Object Identifier
- Title
-
Analyzing Healthcare Big Data With Prediction for Future Health ConditionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-01-01Full publication date if available
- Authors
-
Prasan Kumar Sahoo, Suvendu Kumar Mohapatra, Shih‐Lin WuList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2016.2647619Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/7419931/07805199.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/7419931/07805199.pdfDirect OA link when available
- Concepts
-
Computer science, Cloud computing, Big data, Wearable computer, Health care, Probabilistic logic, Data collection, Data mining, Data science, Bandwidth (computing), Artificial intelligence, Statistics, Embedded system, Mathematics, Operating system, Computer network, Economic growth, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
154Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 11, 2023: 13, 2022: 27, 2021: 31Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2571067114 |
|---|---|
| doi | https://doi.org/10.1109/access.2016.2647619 |
| ids.doi | https://doi.org/10.1109/access.2016.2647619 |
| ids.mag | 2571067114 |
| ids.openalex | https://openalex.org/W2571067114 |
| fwci | 11.34433668 |
| type | article |
| title | Analyzing Healthcare Big Data With Prediction for Future Health Condition |
| awards[0].id | https://openalex.org/G8139394441 |
| awards[0].funder_id | https://openalex.org/F4320322795 |
| awards[0].display_name | |
| awards[0].funder_award_id | 105-2221-E-182-043 |
| awards[0].funder_display_name | Ministry of Science and Technology, Taiwan |
| awards[1].id | https://openalex.org/G4800181768 |
| awards[1].funder_id | https://openalex.org/F4320322795 |
| awards[1].display_name | |
| awards[1].funder_award_id | 105-2221-E-182-050 |
| awards[1].funder_display_name | Ministry of Science and Technology, Taiwan |
| biblio.issue | |
| biblio.volume | 4 |
| biblio.last_page | 9799 |
| biblio.first_page | 9786 |
| topics[0].id | https://openalex.org/T10273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9933000206947327 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | IoT and Edge/Fog Computing |
| topics[1].id | https://openalex.org/T11396 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9887999892234802 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3605 |
| topics[1].subfield.display_name | Health Information Management |
| topics[1].display_name | Artificial Intelligence in Healthcare |
| topics[2].id | https://openalex.org/T11891 |
| topics[2].field.id | https://openalex.org/fields/14 |
| topics[2].field.display_name | Business, Management and Accounting |
| topics[2].score | 0.9559999704360962 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1404 |
| topics[2].subfield.display_name | Management Information Systems |
| topics[2].display_name | Big Data and Business Intelligence |
| funders[0].id | https://openalex.org/F4320322795 |
| funders[0].ror | https://ror.org/02kv4zf79 |
| funders[0].display_name | Ministry of Science and Technology, Taiwan |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7861894965171814 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C79974875 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7466168403625488 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[1].display_name | Cloud computing |
| concepts[2].id | https://openalex.org/C75684735 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6504097580909729 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[2].display_name | Big data |
| concepts[3].id | https://openalex.org/C150594956 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6168078184127808 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1334829 |
| concepts[3].display_name | Wearable computer |
| concepts[4].id | https://openalex.org/C160735492 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5968077182769775 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q31207 |
| concepts[4].display_name | Health care |
| concepts[5].id | https://openalex.org/C49937458 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5480256080627441 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[5].display_name | Probabilistic logic |
| concepts[6].id | https://openalex.org/C133462117 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5159233808517456 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4929239 |
| concepts[6].display_name | Data collection |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4862026572227478 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C2522767166 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4527358412742615 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[8].display_name | Data science |
| concepts[9].id | https://openalex.org/C2776257435 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41579949855804443 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1576430 |
| concepts[9].display_name | Bandwidth (computing) |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.22761213779449463 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.10399261116981506 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C149635348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.07987123727798462 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[12].display_name | Embedded system |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| concepts[15].id | https://openalex.org/C31258907 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[15].display_name | Computer network |
| concepts[16].id | https://openalex.org/C50522688 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[16].display_name | Economic growth |
| concepts[17].id | https://openalex.org/C162324750 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[17].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7861894965171814 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/cloud-computing |
| keywords[1].score | 0.7466168403625488 |
| keywords[1].display_name | Cloud computing |
| keywords[2].id | https://openalex.org/keywords/big-data |
| keywords[2].score | 0.6504097580909729 |
| keywords[2].display_name | Big data |
| keywords[3].id | https://openalex.org/keywords/wearable-computer |
| keywords[3].score | 0.6168078184127808 |
| keywords[3].display_name | Wearable computer |
| keywords[4].id | https://openalex.org/keywords/health-care |
| keywords[4].score | 0.5968077182769775 |
| keywords[4].display_name | Health care |
| keywords[5].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[5].score | 0.5480256080627441 |
| keywords[5].display_name | Probabilistic logic |
| keywords[6].id | https://openalex.org/keywords/data-collection |
| keywords[6].score | 0.5159233808517456 |
| keywords[6].display_name | Data collection |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.4862026572227478 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/data-science |
| keywords[8].score | 0.4527358412742615 |
| keywords[8].display_name | Data science |
| keywords[9].id | https://openalex.org/keywords/bandwidth |
| keywords[9].score | 0.41579949855804443 |
| keywords[9].display_name | Bandwidth (computing) |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.22761213779449463 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.10399261116981506 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/embedded-system |
| keywords[12].score | 0.07987123727798462 |
| keywords[12].display_name | Embedded system |
| language | en |
| locations[0].id | doi:10.1109/access.2016.2647619 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/7419931/07805199.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2016.2647619 |
| locations[1].id | pmh:oai:doaj.org/article:f7003315099044a1b3ff1c44d1a1e9e5 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 4, Pp 9786-9799 (2016) |
| locations[1].landing_page_url | https://doaj.org/article/f7003315099044a1b3ff1c44d1a1e9e5 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5043838453 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3496-1195 |
| authorships[0].author.display_name | Prasan Kumar Sahoo |
| authorships[0].countries | TW |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I173093425 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I3020100970 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Cardiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan |
| authorships[0].institutions[0].id | https://openalex.org/I3020100970 |
| authorships[0].institutions[0].ror | https://ror.org/02verss31 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I3020100970 |
| authorships[0].institutions[0].country_code | TW |
| authorships[0].institutions[0].display_name | Chang Gung Memorial Hospital |
| authorships[0].institutions[1].id | https://openalex.org/I173093425 |
| authorships[0].institutions[1].ror | https://ror.org/00d80zx46 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I173093425 |
| authorships[0].institutions[1].country_code | TW |
| authorships[0].institutions[1].display_name | Chang Gung University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Prasan Kumar Sahoo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Cardiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan |
| authorships[1].author.id | https://openalex.org/A5083610334 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6512-3736 |
| authorships[1].author.display_name | Suvendu Kumar Mohapatra |
| authorships[1].countries | TW |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I173093425 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan |
| authorships[1].institutions[0].id | https://openalex.org/I173093425 |
| authorships[1].institutions[0].ror | https://ror.org/00d80zx46 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I173093425 |
| authorships[1].institutions[0].country_code | TW |
| authorships[1].institutions[0].display_name | Chang Gung University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Suvendu Kumar Mohapatra |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan |
| authorships[2].author.id | https://openalex.org/A5044556650 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8253-3270 |
| authorships[2].author.display_name | Shih‐Lin Wu |
| authorships[2].countries | TW |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I3020100970 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Cardiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I173093425 |
| authorships[2].affiliations[1].raw_affiliation_string | Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I12213908 |
| authorships[2].affiliations[2].raw_affiliation_string | Department of Electrical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan |
| authorships[2].institutions[0].id | https://openalex.org/I3020100970 |
| authorships[2].institutions[0].ror | https://ror.org/02verss31 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I3020100970 |
| authorships[2].institutions[0].country_code | TW |
| authorships[2].institutions[0].display_name | Chang Gung Memorial Hospital |
| authorships[2].institutions[1].id | https://openalex.org/I173093425 |
| authorships[2].institutions[1].ror | https://ror.org/00d80zx46 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I173093425 |
| authorships[2].institutions[1].country_code | TW |
| authorships[2].institutions[1].display_name | Chang Gung University |
| authorships[2].institutions[2].id | https://openalex.org/I12213908 |
| authorships[2].institutions[2].ror | https://ror.org/04xgh4d03 |
| authorships[2].institutions[2].type | education |
| authorships[2].institutions[2].lineage | https://openalex.org/I12213908 |
| authorships[2].institutions[2].country_code | TW |
| authorships[2].institutions[2].display_name | Ming Chi University of Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Shih-Lin Wu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Cardiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan, Department of Electrical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/7419931/07805199.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Analyzing Healthcare Big Data With Prediction for Future Health Condition |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9933000206947327 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | IoT and Edge/Fog Computing |
| related_works | https://openalex.org/W4390608645, https://openalex.org/W4394895745, https://openalex.org/W4247566972, https://openalex.org/W2960264696, https://openalex.org/W3090563135, https://openalex.org/W2497432351, https://openalex.org/W4206777497, https://openalex.org/W2910064364, https://openalex.org/W4200136508, https://openalex.org/W2499527417 |
| cited_by_count | 154 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 11 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 13 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 27 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 31 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 26 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 14 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 14 |
| counts_by_year[8].year | 2017 |
| counts_by_year[8].cited_by_count | 10 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2016.2647619 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/7419931/07805199.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2016.2647619 |
| primary_location.id | doi:10.1109/access.2016.2647619 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/7419931/07805199.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2016.2647619 |
| publication_date | 2016-01-01 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W2143190917, https://openalex.org/W2045287414, https://openalex.org/W2164621115, https://openalex.org/W2060647977, https://openalex.org/W1551824952, https://openalex.org/W2266330136, https://openalex.org/W2145429131, https://openalex.org/W1965009492, https://openalex.org/W1982790367, https://openalex.org/W2084580750, https://openalex.org/W2473013648, https://openalex.org/W2509591188, https://openalex.org/W2963901460, https://openalex.org/W2028941259, https://openalex.org/W2173213060, https://openalex.org/W2096812488, https://openalex.org/W2200122354, https://openalex.org/W2081482027, https://openalex.org/W2157954477, https://openalex.org/W2124794572, https://openalex.org/W2041460879, https://openalex.org/W2258475915, https://openalex.org/W2120751691, https://openalex.org/W2524372520, https://openalex.org/W2534904844, https://openalex.org/W2262682506, https://openalex.org/W2471377928, https://openalex.org/W1541250240, https://openalex.org/W7074240486, https://openalex.org/W1943579973, https://openalex.org/W2023220927, https://openalex.org/W2033591270, https://openalex.org/W2013787102, https://openalex.org/W2013938307, https://openalex.org/W2205836001, https://openalex.org/W2090981944, https://openalex.org/W2010297342, https://openalex.org/W3142940797, https://openalex.org/W1531237901, https://openalex.org/W3120740533 |
| referenced_works_count | 40 |
| abstract_inverted_index.A | 42 |
| abstract_inverted_index.a | 3, 67, 85 |
| abstract_inverted_index.In | 0, 64 |
| abstract_inverted_index.in | 38, 119 |
| abstract_inverted_index.is | 10, 48, 72, 82, 89, 114 |
| abstract_inverted_index.of | 6, 24, 30, 78, 97, 110, 128, 133 |
| abstract_inverted_index.on | 103 |
| abstract_inverted_index.to | 52, 91, 138 |
| abstract_inverted_index.90% | 132 |
| abstract_inverted_index.98% | 126 |
| abstract_inverted_index.CPU | 134 |
| abstract_inverted_index.The | 22 |
| abstract_inverted_index.and | 18, 27, 56, 74, 130, 135 |
| abstract_inverted_index.are | 36 |
| abstract_inverted_index.big | 44 |
| abstract_inverted_index.the | 13, 28, 31, 39, 49, 54, 75, 93, 98, 111, 120, 140 |
| abstract_inverted_index.way | 51 |
| abstract_inverted_index.best | 50 |
| abstract_inverted_index.body | 20 |
| abstract_inverted_index.data | 9, 45, 58, 69, 81 |
| abstract_inverted_index.from | 12, 60 |
| abstract_inverted_index.most | 99 |
| abstract_inverted_index.this | 65 |
| abstract_inverted_index.about | 125 |
| abstract_inverted_index.based | 102 |
| abstract_inverted_index.cloud | 121 |
| abstract_inverted_index.gives | 124 |
| abstract_inverted_index.large | 4 |
| abstract_inverted_index.model | 88 |
| abstract_inverted_index.still | 37 |
| abstract_inverted_index.their | 104 |
| abstract_inverted_index.those | 79 |
| abstract_inverted_index.time. | 142 |
| abstract_inverted_index.which | 123 |
| abstract_inverted_index.future | 33, 94 |
| abstract_inverted_index.health | 34, 95, 106 |
| abstract_inverted_index.notes, | 17 |
| abstract_inverted_index.paper, | 66 |
| abstract_inverted_index.reduce | 139 |
| abstract_inverted_index.stage. | 41 |
| abstract_inverted_index.volume | 5 |
| abstract_inverted_index.analyze | 53 |
| abstract_inverted_index.current | 105 |
| abstract_inverted_index.foresee | 92 |
| abstract_inverted_index.patient | 8 |
| abstract_inverted_index.status. | 107 |
| abstract_inverted_index.through | 116 |
| abstract_inverted_index.Finally, | 84 |
| abstract_inverted_index.accuracy | 127 |
| abstract_inverted_index.analysis | 23, 77, 141 |
| abstract_inverted_index.analytic | 46 |
| abstract_inverted_index.clinical | 14 |
| abstract_inverted_index.designed | 73, 90 |
| abstract_inverted_index.doctor's | 16 |
| abstract_inverted_index.patients | 101 |
| abstract_inverted_index.platform | 47 |
| abstract_inverted_index.proposed | 112 |
| abstract_inverted_index.realized | 115 |
| abstract_inverted_index.reports, | 15 |
| abstract_inverted_index.sensors. | 21 |
| abstract_inverted_index.systems. | 63 |
| abstract_inverted_index.wearable | 19 |
| abstract_inverted_index.bandwidth | 136 |
| abstract_inverted_index.collected | 80 |
| abstract_inverted_index.condition | 96 |
| abstract_inverted_index.extensive | 117 |
| abstract_inverted_index.generated | 11, 59 |
| abstract_inverted_index.maintains | 131 |
| abstract_inverted_index.mechanism | 71 |
| abstract_inverted_index.protocols | 113 |
| abstract_inverted_index.collection | 70 |
| abstract_inverted_index.conditions | 35 |
| abstract_inverted_index.correlated | 100 |
| abstract_inverted_index.evaluation | 109 |
| abstract_inverted_index.healthcare | 1, 25, 61 |
| abstract_inverted_index.management | 62 |
| abstract_inverted_index.parameters | 26 |
| abstract_inverted_index.performed. | 83 |
| abstract_inverted_index.prediction | 29, 87 |
| abstract_inverted_index.stochastic | 86 |
| abstract_inverted_index.structured | 55 |
| abstract_inverted_index.subsequent | 32 |
| abstract_inverted_index.Performance | 108 |
| abstract_inverted_index.correlation | 76 |
| abstract_inverted_index.informative | 40 |
| abstract_inverted_index.management, | 2 |
| abstract_inverted_index.prediction, | 129 |
| abstract_inverted_index.simulations | 118 |
| abstract_inverted_index.utilization | 137 |
| abstract_inverted_index.environment, | 122 |
| abstract_inverted_index.unstructured | 57 |
| abstract_inverted_index.cloud-enabled | 43 |
| abstract_inverted_index.probabilistic | 68 |
| abstract_inverted_index.multi-structured | 7 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.98687496 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |