Analyzing risk factors and handling imbalanced data for predicting stroke risk using machine learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.26555/ijain.v11i1.1678
Stroke is a serious medical condition resulting from disturbances in blood flow to the brain, signaling a chronic health issue that requires an immediate response. Principal risk factors increasing the likelihood of stroke include the presence of pre-existing conditions such as Diabetes Mellitus (DM), hypertension, and high cholesterol levels. Effective preventive measures are crucial to minimize stroke risk, and using predictive methods based on data analysis from the clinical examination dataset over the last three years (2019-2021), known as the general checkup (GCU) dataset, presents an innovative approach. This study aims to predict an individual's stroke risk for the following year. In this context, the study also addresses the preprocessing stage of the GCU dataset, which includes solutions for missing values by substituting them with the statistical mean, label encoding, feature correlation analysis using entropy values, and addressing data imbalance with the Adaptive Synthetic (ADASYN) technique. To evaluate their predictive performance, the research involves comparisons among various machine learning models. The outcome of the experiment shows that the Random Forest model is the best model, with 98.7% accuracy and 63.9% F1-Score. This research highlights the importance of preemptive measures against stroke by utilizing predictive techniques on clinical data, with the Random Forest model proving most effective in forecasting stroke probability.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.26555/ijain.v11i1.1678
- https://ijain.org/index.php/IJAIN/article/download/1678/ijain_vol11i1_pp39-54
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408096307
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408096307Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26555/ijain.v11i1.1678Digital Object Identifier
- Title
-
Analyzing risk factors and handling imbalanced data for predicting stroke risk using machine learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-28Full publication date if available
- Authors
-
Adiwijaya Adiwijaya, Nur Ghaniaviyanto RamadhanList of authors in order
- Landing page
-
https://doi.org/10.26555/ijain.v11i1.1678Publisher landing page
- PDF URL
-
https://ijain.org/index.php/IJAIN/article/download/1678/ijain_vol11i1_pp39-54Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ijain.org/index.php/IJAIN/article/download/1678/ijain_vol11i1_pp39-54Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Machine learning, Stroke risk, Stroke (engine), Medicine, Ischemic stroke, Internal medicine, Engineering, Mechanical engineering, IschemiaTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408096307 |
|---|---|
| doi | https://doi.org/10.26555/ijain.v11i1.1678 |
| ids.doi | https://doi.org/10.26555/ijain.v11i1.1678 |
| ids.openalex | https://openalex.org/W4408096307 |
| fwci | 0.0 |
| type | article |
| title | Analyzing risk factors and handling imbalanced data for predicting stroke risk using machine learning |
| biblio.issue | 1 |
| biblio.volume | 11 |
| biblio.last_page | 39 |
| biblio.first_page | 39 |
| topics[0].id | https://openalex.org/T11396 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9696000218391418 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3605 |
| topics[0].subfield.display_name | Health Information Management |
| topics[0].display_name | Artificial Intelligence in Healthcare |
| is_xpac | False |
| apc_list.value | 200 |
| apc_list.currency | USD |
| apc_list.value_usd | 200 |
| apc_paid.value | 200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 200 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6574409008026123 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5600816011428833 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.538145899772644 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C3020200829 |
| concepts[3].level | 4 |
| concepts[3].score | 0.5009701251983643 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12202 |
| concepts[3].display_name | Stroke risk |
| concepts[4].id | https://openalex.org/C2780645631 |
| concepts[4].level | 2 |
| concepts[4].score | 0.41773420572280884 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q671554 |
| concepts[4].display_name | Stroke (engine) |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.15841016173362732 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C3020199598 |
| concepts[6].level | 3 |
| concepts[6].score | 0.15767088532447815 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12202 |
| concepts[6].display_name | Ischemic stroke |
| concepts[7].id | https://openalex.org/C126322002 |
| concepts[7].level | 1 |
| concepts[7].score | 0.09100368618965149 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[7].display_name | Internal medicine |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.06275615096092224 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| concepts[9].id | https://openalex.org/C78519656 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[9].display_name | Mechanical engineering |
| concepts[10].id | https://openalex.org/C541997718 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q188151 |
| concepts[10].display_name | Ischemia |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6574409008026123 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5600816011428833 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.538145899772644 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/stroke-risk |
| keywords[3].score | 0.5009701251983643 |
| keywords[3].display_name | Stroke risk |
| keywords[4].id | https://openalex.org/keywords/stroke |
| keywords[4].score | 0.41773420572280884 |
| keywords[4].display_name | Stroke (engine) |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.15841016173362732 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/ischemic-stroke |
| keywords[6].score | 0.15767088532447815 |
| keywords[6].display_name | Ischemic stroke |
| keywords[7].id | https://openalex.org/keywords/internal-medicine |
| keywords[7].score | 0.09100368618965149 |
| keywords[7].display_name | Internal medicine |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.06275615096092224 |
| keywords[8].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.26555/ijain.v11i1.1678 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2738302941 |
| locations[0].source.issn | 2442-6571, 2548-3161 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2442-6571 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | International Journal of Advances in Intelligent Informatics |
| locations[0].source.host_organization | https://openalex.org/P4310319805 |
| locations[0].source.host_organization_name | Ahmad Dahlan University |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319805 |
| locations[0].source.host_organization_lineage_names | Ahmad Dahlan University |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | https://ijain.org/index.php/IJAIN/article/download/1678/ijain_vol11i1_pp39-54 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Advances in Intelligent Informatics |
| locations[0].landing_page_url | https://doi.org/10.26555/ijain.v11i1.1678 |
| locations[1].id | pmh:oai:doaj.org/article:cdd31dba679f45aeba61ee49a91e1dee |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IJAIN (International Journal of Advances in Intelligent Informatics), Vol 11, Iss 1, Pp 39-54 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/cdd31dba679f45aeba61ee49a91e1dee |
| locations[2].id | pmh:oai:ojs.ijain.org:article/1678 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401515 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | International Journal of Advances in Intelligent Informatics - International Journal of Advances in Intelligent Informatics |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | 2442-6571 |
| locations[2].landing_page_url | http://ijain.org/index.php/IJAIN/article/view/1678 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5061473902 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3518-7587 |
| authorships[0].author.display_name | Adiwijaya Adiwijaya |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Adiwijaya Adiwijaya |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5052181694 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0304-516X |
| authorships[1].author.display_name | Nur Ghaniaviyanto Ramadhan |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Nur Ghaniaviyanto Ramadhan |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ijain.org/index.php/IJAIN/article/download/1678/ijain_vol11i1_pp39-54 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Analyzing risk factors and handling imbalanced data for predicting stroke risk using machine learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11396 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9696000218391418 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3605 |
| primary_topic.subfield.display_name | Health Information Management |
| primary_topic.display_name | Artificial Intelligence in Healthcare |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W3046775127, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.26555/ijain.v11i1.1678 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2738302941 |
| best_oa_location.source.issn | 2442-6571, 2548-3161 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2442-6571 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | International Journal of Advances in Intelligent Informatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310319805 |
| best_oa_location.source.host_organization_name | Ahmad Dahlan University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319805 |
| best_oa_location.source.host_organization_lineage_names | Ahmad Dahlan University |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | https://ijain.org/index.php/IJAIN/article/download/1678/ijain_vol11i1_pp39-54 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Advances in Intelligent Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.26555/ijain.v11i1.1678 |
| primary_location.id | doi:10.26555/ijain.v11i1.1678 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2738302941 |
| primary_location.source.issn | 2442-6571, 2548-3161 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2442-6571 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | International Journal of Advances in Intelligent Informatics |
| primary_location.source.host_organization | https://openalex.org/P4310319805 |
| primary_location.source.host_organization_name | Ahmad Dahlan University |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319805 |
| primary_location.source.host_organization_lineage_names | Ahmad Dahlan University |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | https://ijain.org/index.php/IJAIN/article/download/1678/ijain_vol11i1_pp39-54 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Advances in Intelligent Informatics |
| primary_location.landing_page_url | https://doi.org/10.26555/ijain.v11i1.1678 |
| publication_date | 2025-02-28 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 16 |
| abstract_inverted_index.In | 101 |
| abstract_inverted_index.To | 146 |
| abstract_inverted_index.an | 22, 85, 93 |
| abstract_inverted_index.as | 40, 78 |
| abstract_inverted_index.by | 121, 191 |
| abstract_inverted_index.in | 9, 206 |
| abstract_inverted_index.is | 1, 171 |
| abstract_inverted_index.of | 31, 36, 111, 162, 186 |
| abstract_inverted_index.on | 63, 195 |
| abstract_inverted_index.to | 12, 54, 91 |
| abstract_inverted_index.GCU | 113 |
| abstract_inverted_index.The | 160 |
| abstract_inverted_index.and | 45, 58, 136, 178 |
| abstract_inverted_index.are | 52 |
| abstract_inverted_index.for | 97, 118 |
| abstract_inverted_index.the | 13, 29, 34, 67, 72, 79, 98, 104, 108, 112, 125, 141, 151, 163, 167, 172, 184, 199 |
| abstract_inverted_index.This | 88, 181 |
| abstract_inverted_index.aims | 90 |
| abstract_inverted_index.also | 106 |
| abstract_inverted_index.best | 173 |
| abstract_inverted_index.data | 64, 138 |
| abstract_inverted_index.flow | 11 |
| abstract_inverted_index.from | 7, 66 |
| abstract_inverted_index.high | 46 |
| abstract_inverted_index.last | 73 |
| abstract_inverted_index.most | 204 |
| abstract_inverted_index.over | 71 |
| abstract_inverted_index.risk | 26, 96 |
| abstract_inverted_index.such | 39 |
| abstract_inverted_index.that | 20, 166 |
| abstract_inverted_index.them | 123 |
| abstract_inverted_index.this | 102 |
| abstract_inverted_index.with | 124, 140, 175, 198 |
| abstract_inverted_index.(DM), | 43 |
| abstract_inverted_index.(GCU) | 82 |
| abstract_inverted_index.63.9% | 179 |
| abstract_inverted_index.98.7% | 176 |
| abstract_inverted_index.among | 155 |
| abstract_inverted_index.based | 62 |
| abstract_inverted_index.blood | 10 |
| abstract_inverted_index.data, | 197 |
| abstract_inverted_index.issue | 19 |
| abstract_inverted_index.known | 77 |
| abstract_inverted_index.label | 128 |
| abstract_inverted_index.mean, | 127 |
| abstract_inverted_index.model | 170, 202 |
| abstract_inverted_index.risk, | 57 |
| abstract_inverted_index.shows | 165 |
| abstract_inverted_index.stage | 110 |
| abstract_inverted_index.study | 89, 105 |
| abstract_inverted_index.their | 148 |
| abstract_inverted_index.three | 74 |
| abstract_inverted_index.using | 59, 133 |
| abstract_inverted_index.which | 115 |
| abstract_inverted_index.year. | 100 |
| abstract_inverted_index.years | 75 |
| abstract_inverted_index.Forest | 169, 201 |
| abstract_inverted_index.Random | 168, 200 |
| abstract_inverted_index.Stroke | 0 |
| abstract_inverted_index.brain, | 14 |
| abstract_inverted_index.health | 18 |
| abstract_inverted_index.model, | 174 |
| abstract_inverted_index.stroke | 32, 56, 95, 190, 208 |
| abstract_inverted_index.values | 120 |
| abstract_inverted_index.against | 189 |
| abstract_inverted_index.checkup | 81 |
| abstract_inverted_index.chronic | 17 |
| abstract_inverted_index.crucial | 53 |
| abstract_inverted_index.dataset | 70 |
| abstract_inverted_index.entropy | 134 |
| abstract_inverted_index.factors | 27 |
| abstract_inverted_index.feature | 130 |
| abstract_inverted_index.general | 80 |
| abstract_inverted_index.include | 33 |
| abstract_inverted_index.levels. | 48 |
| abstract_inverted_index.machine | 157 |
| abstract_inverted_index.medical | 4 |
| abstract_inverted_index.methods | 61 |
| abstract_inverted_index.missing | 119 |
| abstract_inverted_index.models. | 159 |
| abstract_inverted_index.outcome | 161 |
| abstract_inverted_index.predict | 92 |
| abstract_inverted_index.proving | 203 |
| abstract_inverted_index.serious | 3 |
| abstract_inverted_index.values, | 135 |
| abstract_inverted_index.various | 156 |
| abstract_inverted_index.(ADASYN) | 144 |
| abstract_inverted_index.Adaptive | 142 |
| abstract_inverted_index.Diabetes | 41 |
| abstract_inverted_index.Mellitus | 42 |
| abstract_inverted_index.accuracy | 177 |
| abstract_inverted_index.analysis | 65, 132 |
| abstract_inverted_index.clinical | 68, 196 |
| abstract_inverted_index.context, | 103 |
| abstract_inverted_index.dataset, | 83, 114 |
| abstract_inverted_index.evaluate | 147 |
| abstract_inverted_index.includes | 116 |
| abstract_inverted_index.involves | 153 |
| abstract_inverted_index.learning | 158 |
| abstract_inverted_index.measures | 51, 188 |
| abstract_inverted_index.minimize | 55 |
| abstract_inverted_index.presence | 35 |
| abstract_inverted_index.presents | 84 |
| abstract_inverted_index.requires | 21 |
| abstract_inverted_index.research | 152, 182 |
| abstract_inverted_index.Effective | 49 |
| abstract_inverted_index.F1-Score. | 180 |
| abstract_inverted_index.Principal | 25 |
| abstract_inverted_index.Synthetic | 143 |
| abstract_inverted_index.addresses | 107 |
| abstract_inverted_index.approach. | 87 |
| abstract_inverted_index.condition | 5 |
| abstract_inverted_index.effective | 205 |
| abstract_inverted_index.encoding, | 129 |
| abstract_inverted_index.following | 99 |
| abstract_inverted_index.imbalance | 139 |
| abstract_inverted_index.immediate | 23 |
| abstract_inverted_index.response. | 24 |
| abstract_inverted_index.resulting | 6 |
| abstract_inverted_index.signaling | 15 |
| abstract_inverted_index.solutions | 117 |
| abstract_inverted_index.utilizing | 192 |
| abstract_inverted_index.addressing | 137 |
| abstract_inverted_index.conditions | 38 |
| abstract_inverted_index.experiment | 164 |
| abstract_inverted_index.highlights | 183 |
| abstract_inverted_index.importance | 185 |
| abstract_inverted_index.increasing | 28 |
| abstract_inverted_index.innovative | 86 |
| abstract_inverted_index.likelihood | 30 |
| abstract_inverted_index.predictive | 60, 149, 193 |
| abstract_inverted_index.preemptive | 187 |
| abstract_inverted_index.preventive | 50 |
| abstract_inverted_index.technique. | 145 |
| abstract_inverted_index.techniques | 194 |
| abstract_inverted_index.cholesterol | 47 |
| abstract_inverted_index.comparisons | 154 |
| abstract_inverted_index.correlation | 131 |
| abstract_inverted_index.examination | 69 |
| abstract_inverted_index.forecasting | 207 |
| abstract_inverted_index.statistical | 126 |
| abstract_inverted_index.(2019-2021), | 76 |
| abstract_inverted_index.disturbances | 8 |
| abstract_inverted_index.individual's | 94 |
| abstract_inverted_index.performance, | 150 |
| abstract_inverted_index.pre-existing | 37 |
| abstract_inverted_index.probability. | 209 |
| abstract_inverted_index.substituting | 122 |
| abstract_inverted_index.hypertension, | 44 |
| abstract_inverted_index.preprocessing | 109 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.07521256 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |